login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Padovan numbers that are semiprimes.
4

%I #21 Sep 07 2017 09:27:49

%S 4,9,21,49,65,86,265,1081,1897,2513,7739,97229,128801,299426,922111,

%T 1221537,2839729,62608681,338356945,53406819691,2066337330754,

%U 6363483400447,8429820731201,432062194544201,7190854504969591,12619069972000553,16716708595637087

%N Padovan numbers that are semiprimes.

%C The smallest candidate for the next term in the b-file is A000931(1958), which is composite with 239 digits and an unknown number of prime factors. - _Hugo Pfoertner_, Sep 07 2017

%H Hugo Pfoertner, <a href="/A122498/b122498.txt">Table of n, a(n) for n = 1..54</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Semiprime.html">Semiprime</a>

%p select(x-> numtheory[bigomega](x)=2, [(<<0|1|0>,

%p <0|0|1>, <1|1|0>>^i)[1$2]$i=0..300])[]; # _Alois P. Heinz_, Aug 31 2017

%t SemiprimeQ[1] := False SemiprimeQ[n_Integer] := Plus @@ (Last /@ FactorInteger[n]) == 2 a = Table[ SeriesCoefficient[ Series[x/(1 - x^2 - x^3), {x, 0, 50}], n], {n, 0, 50}] f[n_] = If[SemiprimeQ[a[[n]]] == True, a[[n]], {}] Flatten[Table[f[n], {n, 1, Length[a]}]]

%Y Cf. A000931, A001358, A053409, A100891.

%K nonn

%O 1,1

%A _Roger L. Bagula_, Sep 15 2006

%E More terms from _Alois P. Heinz_, Aug 31 2017