login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122192
Sum of the n-th powers of the roots of the (reduced) weight enumerator of the extended Golay code (1 + 759*x^2 + 2576*x^3 + 759*x^4 + x^6).
2
6, 0, -1518, -7728, 1149126, 9775920, -851127150, -10374206304, 619950551814, 10059106207584, -443172509029998, -9223980220220304, 309985135145332422, 8134978519171135632, -211181377213616588526, -6965969413257227260608, 139095682365347347024902
OFFSET
0,1
FORMULA
G.f.: 6*(1 + 506*x^2 + 1288*x^3 + 253*x^4)/(1 + 759*x^2 + 2576*x^3 + 759*x^4 + x^6).
MAPLE
Newt:=proc(f) local t1, t2, t3, t4; t1:=f; t2:=diff(f, x); t3:=expand(x^degree(t1, x)*subs(x=1/x, t1)); t4:=expand(x^degree(t2, x)*subs(x=1/x, t2)); factor(t4/t3); end;
g:=1+759*x^2+2576*x^3+759*x^4+x^6; Newt(g); series(%, x, 60);
MATHEMATICA
LinearRecurrence[{0, -759, -2576, -759, 0, -1}, {6, 0, -1518, -7728, 1149126, 9775920}, 30] (* G. C. Greubel, Jul 11 2021 *)
PROG
(PARI) polsym(x^6 + 759*x^4 + 2576*x^3 + 759*x^2 + 1, 30) \\ Charles R Greathouse IV, Jul 20 2016
(Sage)
def A122192_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 6*(1+506*x^2+1288*x^3+253*x^4)/(1+759*x^2+2576*x^3+759*x^4 +x^6) ).list()
A122192_list(30) # G. C. Greubel, Jul 11 2021
CROSSREFS
Sequence in context: A219952 A156444 A218343 * A357801 A249698 A284452
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 12 2006
STATUS
approved