login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A122192
Sum of the n-th powers of the roots of the (reduced) weight enumerator of the extended Golay code (1 + 759*x^2 + 2576*x^3 + 759*x^4 + x^6).
2
6, 0, -1518, -7728, 1149126, 9775920, -851127150, -10374206304, 619950551814, 10059106207584, -443172509029998, -9223980220220304, 309985135145332422, 8134978519171135632, -211181377213616588526, -6965969413257227260608, 139095682365347347024902
OFFSET
0,1
FORMULA
G.f.: 6*(1 + 506*x^2 + 1288*x^3 + 253*x^4)/(1 + 759*x^2 + 2576*x^3 + 759*x^4 + x^6).
MAPLE
Newt:=proc(f) local t1, t2, t3, t4; t1:=f; t2:=diff(f, x); t3:=expand(x^degree(t1, x)*subs(x=1/x, t1)); t4:=expand(x^degree(t2, x)*subs(x=1/x, t2)); factor(t4/t3); end;
g:=1+759*x^2+2576*x^3+759*x^4+x^6; Newt(g); series(%, x, 60);
MATHEMATICA
LinearRecurrence[{0, -759, -2576, -759, 0, -1}, {6, 0, -1518, -7728, 1149126, 9775920}, 30] (* G. C. Greubel, Jul 11 2021 *)
PROG
(PARI) polsym(x^6 + 759*x^4 + 2576*x^3 + 759*x^2 + 1, 30) \\ Charles R Greathouse IV, Jul 20 2016
(Sage)
def A122192_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 6*(1+506*x^2+1288*x^3+253*x^4)/(1+759*x^2+2576*x^3+759*x^4 +x^6) ).list()
A122192_list(30) # G. C. Greubel, Jul 11 2021
CROSSREFS
Sequence in context: A219952 A156444 A218343 * A357801 A249698 A284452
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 12 2006
STATUS
approved