login
A121941
Number of unlabeled connected simple graphs with n nodes of degree 4 or less.
18
1, 1, 1, 2, 6, 21, 78, 353, 1929, 12207, 89402, 739335, 6800637, 68531618, 748592936, 8788983173, 110201690911, 1468157196474, 20695559603921, 307590282700915, 4805537369573319, 78710267083015571, 1348394635886684901, 24109112440149231355, 449050443283294835914
OFFSET
0,4
COMMENTS
Number of graphs of hydrogen bonded water clusters.
This counts the connected graphs where each vertex has degree 4 or less. - Charles R Greathouse IV, Jul 07 2017
Also number of saturated hydrocarbons and allotropes with n carbon, or valence 4, atoms (excluding stereoisomers) following the octet rule. - Natan Arie Consigli, Jul 07 2017
LINKS
G. Brinkmann, Generating water clusters and other directed graphs, J. Math. Chem. 46 (4) (2009) 1112-1121, Table 1.
T. Miyake and M. Aida, Enumeration of topology-distinct structures of hydrogen bonded water clusters, Chem. Phys. Lett., vol. 363 (2002) pp. 106-110. See Table 1 column 2 on page 109.
EXAMPLE
With 4 carbons, n-butane, i-butane, cyclobutane, bicyclobutane, methylcyclopropane and tetrahedrane are the 6 isomers satisfying the property above, so a(4)=6. - Natan Arie Consigli, Jul 07 2017
If n=5 then the number of graphs of hydrogen bonded water clusters is 21.
PROG
(nauty/bash) geng -c -D4 ${n} -q | multig -m1 -D4 -u
CROSSREFS
Cf. A121942, A243393 (degree 3 or less), A287424 (excludes allotropes), A289157, A289158, A303032 (degree 5 or less).
Sequence in context: A150193 A052300 A306832 * A150194 A150195 A363810
KEYWORD
nonn,nice
AUTHOR
Parthasarathy Nambi, Sep 03 2006
EXTENSIONS
More terms sent by Natan Arie Consigli, Jul 07 2017
Renamed by Andrew Howroyd, Mar 19 2020 based on comment by Charles R Greathouse IV.
a(16)-a(24) from Andrew Howroyd, Mar 19 2020
STATUS
approved