login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363810
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-14-3, and 4-5-3-1-2.
4
1, 1, 2, 6, 21, 79, 306, 1196, 4681, 18308, 71564, 279820, 1095533, 4298463, 16913428, 66769536, 264526329, 1051845461, 4197832133, 16813161765, 67571221016, 272448598737, 1101876945673, 4469106749281, 18174503562880, 74093063050412, 302753929958872
OFFSET
0,3
COMMENTS
Equivalently, for n>0, the number of separable permutations of [n] that avoid 2-14-3 and 2-1-3-5-4.
The number of guillotine rectangulations (with respect to the weak equivalence) that avoid the geometric patterns "5" and "8". See the Merino and Mütze reference, Table 3, entry "123458".
LINKS
Andrei Asinowski and Cyril Banderier, From geometry to generating functions: rectangulations and permutations, arXiv:2401.05558 [cs.DM], 2024. See page 2.
Arturo Merino and Torsten Mütze. Combinatorial generation via permutation languages. III. Rectangulations. Discrete & Computational Geometry, 70 (2023), 51-122. Preprint: arXiv:2103.09333 [math.CO], 2021.
FORMULA
The generating function F=F(x) satisfies the equation x^8*(x - 2)^2*F^4 - x^3*(x - 1)*(x - 2)*(x^5 - 7*x^4 + 4*x^3 - 6*x^2 + 5*x - 1)*F^3 - x*(x - 1)*(4*x^7 - 22*x^6 + 37*x^5 - 42*x^4 + 53*x^3 - 35*x^2 + 10*x - 1)*F^2 - (5*x^6 - 16*x^5 + 15*x^4 - 28*x^3 + 23*x^2 - 8*x + 1)*(x - 1)^2*F - (2*x^5 - 5*x^4 + 4*x^3 - 10*x^2 + 6*x - 1)*(x - 1)^2 = 0.
MAPLE
with(gfun): seq(coeff(algeqtoseries(x^8*(-2+x)^2*F^4 - x^3*(x-1)*(-2+x)*(x^5-7*x^4+4*x^3-6*x^2+5*x-1)*F^3 - x*(x-1)*(4*x^7-22*x^6+37*x^5-42*x^4+53*x^3-35*x^2+10*x-1)*F^2 - (5*x^6-16*x^5+15*x^4-28*x^3+23*x^2-8*x+1)*(x-1)^2*F - (2*x^5-5*x^4+4*x^3-10*x^2+6*x-1)*(x-1)^2, x, F, 32, true)[1], x, n+1), n = 0..30); # Vaclav Kotesovec, Jun 24 2023
CROSSREFS
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference: A006318, A106228, A363809, A078482, A033321, A363811, A363812, A363813, A006012.
Sequence in context: A121941 A150194 A150195 * A150196 A366082 A148491
KEYWORD
nonn
AUTHOR
Andrei Asinowski, Jun 23 2023
STATUS
approved