login
A121919
Least m such that partition number of m modulo m (=A093952(m)) is n.
3
1, 4, 5, 9, 74, 6, 8, 16, 17, 14, 13, 15, 22, 23, 1402, 19, 41, 69, 26, 232, 61, 617, 28, 38, 30, 205, 50, 196, 65, 32, 175, 56, 96, 381, 45, 140, 57, 104, 59, 51, 119, 795, 262, 117, 78, 88, 86, 60, 106, 812, 113, 63, 81, 90, 229, 72, 66, 209, 71, 68, 352, 178, 64, 354
OFFSET
0,2
LINKS
Robert G. Wilson v and Max Alekseyev, Table of n, a(n) for n = 0..100000, with unknown terms marked by -1 (contains values below 10^8).
EXAMPLE
a(3)=9 because partition number of 9 is 30 == 3 modulo 9,
a(5)=74 because partition number of 74 is 7089500 == 5 modulo 74, etc.
MATHEMATICA
t = Table[0, {10000}]; k = 1; While[k < 475000, a = Mod[ PartitionsP@k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Jul 16 2009 *)
CROSSREFS
Sequence in context: A279919 A041467 A180436 * A041627 A132811 A042179
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 02 2006
EXTENSIONS
b-file extended by Max Alekseyev, Jun 13 2011, May 19 2014
STATUS
approved