%I #34 Jul 31 2015 21:04:19
%S 1,4,5,9,74,6,8,16,17,14,13,15,22,23,1402,19,41,69,26,232,61,617,28,
%T 38,30,205,50,196,65,32,175,56,96,381,45,140,57,104,59,51,119,795,262,
%U 117,78,88,86,60,106,812,113,63,81,90,229,72,66,209,71,68,352,178,64,354
%N Least m such that partition number of m modulo m (=A093952(m)) is n.
%H Max Alekseyev, <a href="/A121919/b121919.txt">Table of n, a(n) for n = 0..10395</a>
%H Robert G. Wilson v and Max Alekseyev, <a href="/A121919/a121919_3.txt">Table of n, a(n) for n = 0..100000, with unknown terms marked by -1</a> (contains values below 10^8).
%e a(3)=9 because partition number of 9 is 30 == 3 modulo 9,
%e a(5)=74 because partition number of 74 is 7089500 == 5 modulo 74, etc.
%t t = Table[0, {10000}]; k = 1; While[k < 475000, a = Mod[ PartitionsP@k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* _Robert G. Wilson v_, Jul 16 2009 *)
%Y Cf. A000041, A093952.
%K nonn
%O 0,2
%A _Zak Seidov_, Sep 02 2006
%E b-file extended by _Max Alekseyev_, Jun 13 2011, May 19 2014