login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041627
Denominators of continued fraction convergents to sqrt(332).
2
1, 4, 5, 9, 77, 86, 163, 738, 26731, 107662, 134393, 242055, 2070833, 2312888, 4383721, 19847772, 718903513, 2895461824, 3614365337, 6509827161, 55692982625, 62202809786, 117895792411, 533785979430, 19334191051891, 77870550186994, 97204741238885
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 26894, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: -(x^14 -4*x^13 +5*x^12 -9*x^11 +77*x^10 -86*x^9 +163*x^8 -738*x^7 -163*x^6 -86*x^5 -77*x^4 -9*x^3 -5*x^2 -4*x -1) / ((x^8 -164*x^4 +1)*(x^8 +164*x^4 +1)). - Colin Barker, Nov 20 2013
a(n) = 26894*a(n-8) - a(n-16) for n>15. - Vincenzo Librandi, Dec 22 2013
MATHEMATICA
Denominator[Convergents[Sqrt[332], 30]] (* Vincenzo Librandi, Dec 22 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 26894, 0, 0, 0, 0, 0, 0, 0, -1}, {1, 4, 5, 9, 77, 86, 163, 738, 26731, 107662, 134393, 242055, 2070833, 2312888, 4383721, 19847772}, 30] (* Harvey P. Dale, Mar 03 2024 *)
PROG
(Magma) I:=[1, 4, 5, 9, 77, 86, 163, 738, 26731, 107662, 134393, 242055, 2070833, 2312888, 4383721, 19847772]; [n le 16 select I[n] else 26894*Self(n-8)-Self(n-16): n in [1..40]]; // Vincenzo Librandi, Dec 22 2013
CROSSREFS
Sequence in context: A041467 A180436 A121919 * A132811 A042179 A042427
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 20 2013
STATUS
approved