login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A042427
Denominators of continued fraction convergents to sqrt(741).
2
1, 4, 5, 9, 122, 2205, 28787, 30992, 59779, 270108, 14645611, 58852552, 73498163, 132350715, 1794057458, 32425384959, 423324061925, 455749446884, 879073508809, 3972043482120, 215369421543289, 865449729655276, 1080819151198565, 1946268880853841
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,14705390,0,0,0,0,0,0,0,0,0,-1).
FORMULA
G.f.: -(x^18 -4*x^17 +5*x^16 -9*x^15 +122*x^14 -2205*x^13 +28787*x^12 -30992*x^11 +59779*x^10 -270108*x^9 -59779*x^8 -30992*x^7 -28787*x^6 -2205*x^5 -122*x^4 -9*x^3 -5*x^2 -4*x -1) / (x^20 -14705390*x^10 +1). - Colin Barker, Dec 12 2013
a(n) = 14705390*a(n-10) - a(n-20) for n>19. - Vincenzo Librandi, Jan 22 2014
MATHEMATICA
Denominator[Convergents[Sqrt[741], 30]] (* Harvey P. Dale, Dec 31 2012 *)
CoefficientList[Series[-(x^18 - 4 x^17 + 5 x^16 - 9 x^15 + 122 x^14 - 2205 x^13 + 28787 x^12 - 30992 x^11 + 59779 x^10 - 270108 x^9 - 59779 x^8 - 30992 x^7 - 28787 x^6 - 2205 x^5 - 122 x^4 - 9 x^3 - 5 x^2 - 4 x - 1)/(x^20 - 14705390 x^10 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 22 2014 *)
CROSSREFS
Sequence in context: A041627 A132811 A042179 * A009778 A215754 A226486
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Dec 12 2013
STATUS
approved