The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A121740 Solutions to the Pell equation  x^2 - 17y^2 = 1 (y values). 2
 0, 8, 528, 34840, 2298912, 151693352, 10009462320, 660472819768, 43581196642368, 2875698505576520, 189752520171407952, 12520790632807348312, 826182429245113580640, 54515519539544688973928 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS After initial term this sequence bisects A041025. See A099370 for corresponding x values. a(n+1)/a(n) apparently converges to (4+sqrt(17))^2. The first solution to the equation x^2 - 17*y^2 = 1 is (X(1); Y(1)) = (1, 0) and the other solutions are defined by: (X(n), Y(n))= (33*X(n-1) + 136*Y(n-1), 8*X(n-1) + 33*Y(n-1)) with n >= 2. - Mohamed Bouhamida, Jan 16 2020 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 Tanya Khovanova, Recursive Sequences Eric Weisstein's World of Mathematics, Pell Equation Index entries for linear recurrences with constant coefficients, signature (66,-1). FORMULA a(n) = ((33+8*sqrt(17))^(n-1) - (33-8*sqrt(17))^(n-1))/(2*sqrt(17)). From Mohamed Bouhamida, Feb 07 2007: (Start) a(n) = 65*(a(n-1) + a(n-2)) - a(n-3). a(n) = 67*(a(n-1) - a(n-2)) + a(n-3). (End) From Philippe Deléham, Nov 18 2008: (Start) a(n) = 66*a(n-1) - a(n-2) for n > 1; a(1)=0, a(2)=8. G.f.: 8*x^2/(1 - 66*x + x^2). (End) E.g.f.: (1/17)*exp(33*x)*(33*sqrt(17)*sinh(8*sqrt(17)*x) + 136*(1 - cosh(8*sqrt(17)*x))). - Stefano Spezia, Feb 08 2020 EXAMPLE A099370(1)^2 - 17*a(1)^2 = 33^2 - 17*8^2 = 1089 - 1088 = 1. MATHEMATICA LinearRecurrence[{66, -1}, {0, 8}, 30] (* Vincenzo Librandi, Dec 18 2011 *) PROG (PARI) Program uses fact that continued fraction for sqrt(17) = [4, 8, 8, ...]. print1("0, "); forstep(n=2, 40, 2, v=vector(n, i, if(i>1, 8, 4)); print1(contfracpnqn(v)[2, 1], ", ")) (MAGMA) I:=[0, 8]; [n le 2 select I[n] else 66*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 18 2011 (Maxima) makelist(expand(((33+8*sqrt(17))^n - (33-8*sqrt(17))^n) /(4*sqrt(17)/2)), n, 0, 16); // Vincenzo Librandi, Dec 18 2011 CROSSREFS Cf. A099370, A041025, A040012. Sequence in context: A003397 A272357 A241367 * A216353 A145182 A089671 Adjacent sequences:  A121737 A121738 A121739 * A121741 A121742 A121743 KEYWORD nonn,easy AUTHOR Rick L. Shepherd, Jul 31 2006 EXTENSIONS Offset changed from 0 to 1 and g.f. adapted by Vincenzo Librandi, Dec 18 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 29 21:59 EDT 2020. Contains 338074 sequences. (Running on oeis4.)