login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Solutions to the Pell equation x^2 - 17y^2 = 1 (y values).
3

%I #61 Dec 23 2024 22:03:23

%S 0,8,528,34840,2298912,151693352,10009462320,660472819768,

%T 43581196642368,2875698505576520,189752520171407952,

%U 12520790632807348312,826182429245113580640,54515519539544688973928

%N Solutions to the Pell equation x^2 - 17y^2 = 1 (y values).

%C After initial term this sequence bisects A041025. See A099370 for corresponding x values. a(n+1)/a(n) apparently converges to (4+sqrt(17))^2.

%C The first solution to the equation x^2 - 17*y^2 = 1 is (X(1); Y(1)) = (1, 0) and the other solutions are defined by: (X(n), Y(n))= (33*X(n-1) + 136*Y(n-1), 8*X(n-1) + 33*Y(n-1)) with n >= 2. - _Mohamed Bouhamida_, Jan 16 2020

%H Vincenzo Librandi, <a href="/A121740/b121740.txt">Table of n, a(n) for n = 1..200</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PellEquation.html">Pell Equation</a>.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (66,-1).

%F a(n) = ((33+8*sqrt(17))^(n-1) - (33-8*sqrt(17))^(n-1))/(2*sqrt(17)).

%F From _Mohamed Bouhamida_, Feb 07 2007: (Start)

%F a(n) = 65*(a(n-1) + a(n-2)) - a(n-3).

%F a(n) = 67*(a(n-1) - a(n-2)) + a(n-3). (End)

%F From _Philippe Deléham_, Nov 18 2008: (Start)

%F a(n) = 66*a(n-1) - a(n-2) for n > 1; a(1)=0, a(2)=8.

%F G.f.: 8*x^2/(1 - 66*x + x^2). (End)

%F E.g.f.: (1/17)*exp(33*x)*(33*sqrt(17)*sinh(8*sqrt(17)*x) + 136*(1 - cosh(8*sqrt(17)*x))). - _Stefano Spezia_, Feb 08 2020

%e A099370(1)^2 - 17*a(1)^2 = 33^2 - 17*8^2 = 1089 - 1088 = 1.

%t LinearRecurrence[{66,-1},{0,8},30] (* _Vincenzo Librandi_, Dec 18 2011 *)

%o (PARI) \\ Program uses fact that continued fraction for sqrt(17) = [4,8,8,...].

%o print1("0, "); forstep(n=2,40,2,v=vector(n,i,if(i>1,8,4)); print1(contfracpnqn(v)[2,1],", "))

%o (Magma) I:=[0, 8]; [n le 2 select I[n] else 66*Self(n-1)-Self(n-2): n in [1..20]]; // _Vincenzo Librandi_, Dec 18 2011

%o (Maxima) makelist(expand(((33+8*sqrt(17))^n - (33-8*sqrt(17))^n) /(4*sqrt(17)/2)), n, 0, 16); /* _Vincenzo Librandi_, Dec 18 2011 */

%Y Cf. A099370, A041025, A040012.

%K nonn,easy

%O 1,2

%A _Rick L. Shepherd_, Jul 31 2006

%E Offset changed from 0 to 1 and g.f. adapted by _Vincenzo Librandi_, Dec 18 2011