The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120657 Expansion of 2*x*(6 +59*x +257*x^2 - 294*x^3 -128*x^4)/((1-x)*(1+x)*(1-2*x)*(1+3*x)*(1-4*x)). 1
 0, 12, 154, 1108, 4106, 19972, 73914, 323188, 1228906, 5144932, 19966874, 81856468, 321759306, 1304637892, 5166951034, 20825008948, 82833227306, 332742946852, 1326760898394, 5319714708628, 21240922384906, 85077652679812 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,11,-27,-10,24). FORMULA G.f.: 2*x*(6 +59*x +257*x^2 - 294*x^3 -128*x^4)/((1-x)*(1+x)*(1-2*x)*(1+3*x)*(1-4*x)). - Colin Barker, Oct 19 2012 MATHEMATICA LinearRecurrence[{3, 11, -27, -10, 24}, {0, 12, 154, 1108, 4106, 19972}, 41] (* G. C. Greubel, Dec 25 2022 *) PROG (Magma) R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( 2*x*(6 +59*x+257*x^2-294*x^3-128*x^4)/(1-3*x-11*x^2+27*x^3+10*x^4-24*x^5) )); // G. C. Greubel, Dec 25 2022 (SageMath) def f(x): return 2*x*(6+59*x+257*x^2-294*x^3-128*x^4)/(1-3*x-11*x^2 +27*x^3+10*x^4-24*x^5) def A120657_list(prec): P. = PowerSeriesRing(ZZ, prec) return P( f(x) ).list() A120657_list(40) # G. C. Greubel, Dec 25 2022 CROSSREFS Sequence in context: A180808 A004356 A036360 * A015612 A085260 A082173 Adjacent sequences: A120654 A120655 A120656 * A120658 A120659 A120660 KEYWORD nonn,easy,less AUTHOR Roger L. Bagula, Aug 10 2006 EXTENSIONS Edited by G. C. Greubel, Dec 25 2022 Meaningful name using g.f. from Joerg Arndt, Dec 26 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 11:14 EDT 2024. Contains 375130 sequences. (Running on oeis4.)