login
A120656
a(n) = (-4 + (-2)^n + 2*3^(n+1))/3 - [n=0].
1
0, 4, 18, 50, 166, 474, 1478, 4330, 13206, 39194, 118438, 353610, 1064246, 3185914, 9571398, 28686890, 86115286, 258236634, 774928358, 2324348170, 6973918326, 20920007354, 62763517318, 188283561450, 564864665366, 1694566034074
OFFSET
0,2
FORMULA
From Colin Barker, Oct 19 2012: (Start)
a(n) = (-4 + (-2)^n + 2*3^(n+1))/3 - [n=0].
a(n) = 2*a(n-1) + 5*a(n-2) - 6*a(n-3) for n>3.
G.f.: 2*x*(2-x)*(1+3*x)/((1-x)*(1+2*x)*(1-3*x)). (End)
E.g.f.: (1/3)*(exp(-2*x) - 3 - 4*exp(x) + 6*exp(3*x)). - G. C. Greubel, Dec 25 2022
MATHEMATICA
LinearRecurrence[{2, 5, -6}, {0, 4, 18, 50}, 51] (* Harvey P. Dale, Oct 18 2014 *)
PROG
(Magma) [0] cat [(-4 + (-2)^n + 2*3^(n+1))/3: n in [1..50]]; // G. C. Greubel, Dec 25 2022
(SageMath) [(-4 + (-2)^n + 2*3^(n+1))/3 -int(n==0) for n in range(51)] # G. C. Greubel, Dec 25 2022
CROSSREFS
Cf. A120655.
Sequence in context: A353162 A303737 A180805 * A256431 A256430 A225263
KEYWORD
nonn,less
AUTHOR
Roger L. Bagula, Aug 10 2006
EXTENSIONS
Edited by G. C. Greubel, Dec 25 2022
Meaningful name using given formula from Joerg Arndt, Dec 26 2022
STATUS
approved