OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4, 4, -16).
FORMULA
From Colin Barker, Oct 19 2012: (Start)
a(n) = 3*(-2)^n - 5*2^n + 27*4^(n-1) for n>0.
a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3) for n>3.
G.f.: (1-x)*(1+8*x+60*x^2)/((1-2*x)*(1+2*x)*(1-4*x)). (End)
MATHEMATICA
LinearRecurrence[{4, 4, -16}, {1, 11, 100, 368}, 50] (* G. C. Greubel, Dec 20 2022 *)
CoefficientList[Series[(1-x)(1+8x+60x^2)/((1-2x)(1+2x)(1-4x)), {x, 0, 30}], x] (* Harvey P. Dale, Sep 11 2024 *)
PROG
(Magma) [1] cat [3*(-2)^n - 5*2^n + 27*4^(n-1): n in [1..40]]; // G. C. Greubel, Dec 20 2022
(SageMath) [3*(-2)^n - 5*2^n + 27*4^(n-1) - (15/4)*int(n==0) for n in range(41)] # G. C. Greubel, Dec 20 2022
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
Roger L. Bagula, Aug 09 2006
EXTENSIONS
Edited by G. C. Greubel, Dec 20 2022
Meaningful name using g.f. from Joerg Arndt, Dec 26 2022
STATUS
approved