login
A120655
Expansion of (1-x)*(1+8*x+60*x^2)/((1-2*x)*(1+2*x)*(1-4*x)).
2
1, 11, 100, 368, 1696, 6656, 27520, 109568, 441856, 1765376, 7075840, 28295168, 113238016, 452919296, 1811906560, 7247495168, 28990898176, 115963068416, 463855943680, 1855421677568, 7421701390336, 29686797172736
OFFSET
0,2
FORMULA
From Colin Barker, Oct 19 2012: (Start)
a(n) = 3*(-2)^n - 5*2^n + 27*4^(n-1) for n>0.
a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3) for n>3.
G.f.: (1-x)*(1+8*x+60*x^2)/((1-2*x)*(1+2*x)*(1-4*x)). (End)
MATHEMATICA
LinearRecurrence[{4, 4, -16}, {1, 11, 100, 368}, 50] (* G. C. Greubel, Dec 20 2022 *)
CoefficientList[Series[(1-x)(1+8x+60x^2)/((1-2x)(1+2x)(1-4x)), {x, 0, 30}], x] (* Harvey P. Dale, Sep 11 2024 *)
PROG
(Magma) [1] cat [3*(-2)^n - 5*2^n + 27*4^(n-1): n in [1..40]]; // G. C. Greubel, Dec 20 2022
(SageMath) [3*(-2)^n - 5*2^n + 27*4^(n-1) - (15/4)*int(n==0) for n in range(41)] # G. C. Greubel, Dec 20 2022
CROSSREFS
Sequence in context: A288440 A288047 A001738 * A018203 A081906 A098296
KEYWORD
nonn,easy,less
AUTHOR
Roger L. Bagula, Aug 09 2006
EXTENSIONS
Edited by G. C. Greubel, Dec 20 2022
Meaningful name using g.f. from Joerg Arndt, Dec 26 2022
STATUS
approved