login
A105932
An eight-symbol substitution on an hypertetrahedron with four symbol connection per vertex.
1
1, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 2, 3, 4, 5, 1, 3, 4, 6, 1, 2, 4, 7, 1, 2, 3, 8, 1, 6, 7, 8, 1, 2, 3, 4, 5, 2, 3, 4, 5, 1, 3, 4, 6, 1, 2, 4, 7, 1, 2, 3, 8, 1, 6, 7, 8, 2, 3, 4, 5, 1, 3, 4, 6, 1, 2, 4, 7, 1, 2, 3, 8, 1, 6, 7, 8, 1, 3, 4, 6, 1, 2, 4, 7, 1, 2, 3, 8, 1, 6, 7, 8, 2, 3, 4, 5, 1, 2, 4, 7, 1, 2, 3, 8, 2
OFFSET
0,3
COMMENTS
This flow can be visualized in 3d by using a cube's vertices as the substitution for the eight points.
FORMULA
1->{2, 3, 4, 5}, 2->{1, 3, 4, 6}, 3->{1, 2, 4, 7}, 4->{1, 2, 3, 8}, 5->{1, 6, 7, 8}, 6->{2, 5, 7, 8}, 7->{3, 5, 6, 8}, 8->{4, 5, 6, 7}
MATHEMATICA
s[1]={2, 3, 4, 5}; s[2]={1, 3, 4, 6}; s[3]={1, 2, 4, 7}; s[4]={1, 2, 3, 8}; s[5]={1, 6, 7, 8}; s[6]={2, 5, 7, 8}; s[7]={3, 5, 6, 8}; s[8]={4, 5, 6, 7}; t[a_] := Join[a, Flatten[s/@a]]; p[0]={1}; p[1]=t[{1}]; p[n_]:=t[p[n-1]] a=Flatten[Table[p[n], {n, 0, 3}]]
CROSSREFS
Sequence in context: A053841 A010884 A339146 * A106652 A338479 A193106
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, Apr 26 2005
STATUS
approved