login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120467
a(n) = Product_{i=0..n} prime(i+1)^(Fibonacci(i) mod 2).
1
1, 3, 15, 15, 165, 2145, 2145, 40755, 937365, 937365, 29058315, 1075157655, 1075157655, 46231779165, 2172893620755, 2172893620755, 128200723624545, 7820244141097245, 7820244141097245, 555237334017904395
OFFSET
0,2
REFERENCES
J. Donald Monk, Mathematical Logic, Springer-Verlag, New York, 1976, page 72.
LINKS
FORMULA
a(n) = Product_{i=0..n} prime(i+1)^(Fibonacci(i) mod 2).
a(n) = Product_{j=0..n} prime(j+1)^A011655(j).
MATHEMATICA
Table[Product[Prime[i+1]^Mod[Fibonacci[i], 2], {i, 0, n}], {n, 0, 30}]
PROG
(Magma) [(&*[NthPrime(j+1)^(j^2 mod 3): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Dec 20 2022
(SageMath)
def A120467(n): return product( nth_prime(j+1)^(j^2%3) for j in range(n+1) )
[A120467(n) for n in range(31)] # G. C. Greubel, Dec 20 2022
CROSSREFS
Sequence in context: A133227 A237628 A074043 * A323499 A332961 A012634
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jul 03 2006
EXTENSIONS
Edited by G. C. Greubel, Dec 20 2022
STATUS
approved