login
a(n) = Product_{i=0..n} prime(i+1)^(Fibonacci(i) mod 2).
1

%I #16 Dec 21 2022 08:19:00

%S 1,3,15,15,165,2145,2145,40755,937365,937365,29058315,1075157655,

%T 1075157655,46231779165,2172893620755,2172893620755,128200723624545,

%U 7820244141097245,7820244141097245,555237334017904395

%N a(n) = Product_{i=0..n} prime(i+1)^(Fibonacci(i) mod 2).

%D J. Donald Monk, Mathematical Logic, Springer-Verlag, New York, 1976, page 72.

%H G. C. Greubel, <a href="/A120467/b120467.txt">Table of n, a(n) for n = 0..485</a>

%F a(n) = Product_{i=0..n} prime(i+1)^(Fibonacci(i) mod 2).

%F a(n) = Product_{j=0..n} prime(j+1)^A011655(j).

%t Table[Product[Prime[i+1]^Mod[Fibonacci[i], 2], {i,0,n}], {n,0,30}]

%o (Magma) [(&*[NthPrime(j+1)^(j^2 mod 3): j in [0..n]]): n in [0..30]]; // _G. C. Greubel_, Dec 20 2022

%o (SageMath)

%o def A120467(n): return product( nth_prime(j+1)^(j^2%3) for j in range(n+1) )

%o [A120467(n) for n in range(31)] # _G. C. Greubel_, Dec 20 2022

%Y Cf. A000045, A011655.

%K nonn

%O 0,2

%A _Roger L. Bagula_, Jul 03 2006

%E Edited by _G. C. Greubel_, Dec 20 2022