%I #16 Dec 21 2022 08:19:00
%S 1,3,15,15,165,2145,2145,40755,937365,937365,29058315,1075157655,
%T 1075157655,46231779165,2172893620755,2172893620755,128200723624545,
%U 7820244141097245,7820244141097245,555237334017904395
%N a(n) = Product_{i=0..n} prime(i+1)^(Fibonacci(i) mod 2).
%D J. Donald Monk, Mathematical Logic, Springer-Verlag, New York, 1976, page 72.
%H G. C. Greubel, <a href="/A120467/b120467.txt">Table of n, a(n) for n = 0..485</a>
%F a(n) = Product_{i=0..n} prime(i+1)^(Fibonacci(i) mod 2).
%F a(n) = Product_{j=0..n} prime(j+1)^A011655(j).
%t Table[Product[Prime[i+1]^Mod[Fibonacci[i], 2], {i,0,n}], {n,0,30}]
%o (Magma) [(&*[NthPrime(j+1)^(j^2 mod 3): j in [0..n]]): n in [0..30]]; // _G. C. Greubel_, Dec 20 2022
%o (SageMath)
%o def A120467(n): return product( nth_prime(j+1)^(j^2%3) for j in range(n+1) )
%o [A120467(n) for n in range(31)] # _G. C. Greubel_, Dec 20 2022
%Y Cf. A000045, A011655.
%K nonn
%O 0,2
%A _Roger L. Bagula_, Jul 03 2006
%E Edited by _G. C. Greubel_, Dec 20 2022