login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120464 a(n) = 5*a(n-1)+a(n-2)-2*a(n-3). 0
0, 2, 11, 57, 292, 1495, 7653, 39176, 200543, 1026585, 5255116, 26901079, 137707341, 704927552, 3608542943, 18472227585, 94559825764, 484054270519, 2477886723189, 12684368234936, 64931619356831, 332386691572713 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Old name was: Sequence produced by 3 X 3 Markov chain based on Murskii's Cayley table for a three element groupoid: M = {{1,1,1},{1,1,1},{1,1,1}}+{{0,0,0},{0,0,1},{0,2,2}} = {{1, 1, 1}, {1, 1, 2}, {1, 3, 3}}.
Characteristic polynomial x^3-5*x^2-x+2. Roots: {-0.6874, 0.568373, 5.11903}. Ratio: 5.11903.
Lyndon (1951) earlier had proved every two-element algebra has a finitely based system of identities. However Murskii (1965) found this classic 3-element example (which is inherently not finitely based).
LINKS
FORMULA
a(n) = 5*a(n-1)+a(n-2)-2*a(n-3). G.f.: x*(2+x)/(1-5*x-x^2+2*x^3). - Colin Barker, May 02 2012
MATHEMATICA
M = {{1, 1, 1}, {1, 1, 2}, {1, 3, 3}} v[1] = {0, 1, 1} v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}] Det[M - x*IdentityMatrix[3]] Factor[%] aaa = Table[x /. NSolve[Det[M - x*IdentityMatrix[3]] == 0, x][[n]], {n, 1, 3}] Abs[aaa] a1 = Table[N[a[[n]]/a[[n - 1]]], {n, 7, 50}]
LinearRecurrence[{5, 1, -2}, {0, 2, 11}, 30] (* Harvey P. Dale, Sep 25 2017 *)
CROSSREFS
Sequence in context: A037490 A037570 A240888 * A164581 A054130 A037738
KEYWORD
nonn,easy,changed
AUTHOR
Roger L. Bagula, Jul 01 2006
EXTENSIONS
Edited by N. J. A. Sloane, Jul 13 2007
Better name by Colin Barker, May 02 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 08:29 EDT 2024. Contains 375997 sequences. (Running on oeis4.)