login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119733 Offsets of the terms of the nodes of the reverse Collatz function. 1
0, 1, 2, 5, 4, 7, 10, 19, 8, 11, 14, 23, 20, 29, 38, 65, 16, 19, 22, 31, 28, 37, 46, 73, 40, 49, 58, 85, 76, 103, 130, 211, 32, 35, 38, 47, 44, 53, 62, 89, 56, 65, 74, 101, 92, 119, 146, 227, 80, 89, 98, 125, 116, 143, 170, 251, 152, 179, 206, 287, 260, 341, 422, 665, 64, 67 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Create a binary tree starting with x. To follow 0 from the root, apply f(x)=2x. To follow 1, apply g(x)=(2x-1)/3. For example, starting with x, the string 010 {also known as f(g(f(x))) }, you would get (8x-2)/3. These expressions represent the reverse Collatz function and will provide numbers whose Collatz path may include x. These expressions will all be of the form (2^a*x-b)/3^c. This sequence concerns b. What makes b interesting is that if you draw the tree, each level of the tree will have the same sequence of values for b. The root of the tree x, can be written as (2^0*x-0)/3^0, which has the first value for b. Each subsequent level contains twice as many values of b.

This sequence is 0 followed by a permutation of A213539, and therefore consists of 0 plus the elements of A116640 multiplied by 2^k, where k >= 0. E.g., 1, 5, 7, 19 becomes 0, 2^0*1, 2^1*1, 2^0*5, 2^2*1, 2^0*7, 2^1*5, 2^0*19 ... - Joe Slater, Dec 19 2016

LINKS

Table of n, a(n) for n=0..65.

FORMULA

a(0) = 0, a(2n + 1) = 2a(n) + 3^wt(n) = 2a(n) + A048883(n), a(2n) = 2a(n), where wt(n) = A000120(n) = the number 1's in the binary representation of n.

EXAMPLE

a(1) = 1 = 2 * 0 + 3^0 since 0 written in binary contains no 1's.

MATHEMATICA

a[0] := 0; a[n_?OddQ] := 2a[(n - 1)/2] + 3^Plus@@IntegerDigits[(n - 1)/2, 2]; a[n_?EvenQ] := 2a[n/2]; Table[a[n], {n, 0, 65}] (* From Alonso del Arte, Apr 21 2011 *)

PROG

# perl, sorry :-( # call with n to get 2^n values $depth=shift; sub funct { my ($i, $b, $c) = @_; if ($i < $depth) { funct($i+1, $b*2, $c); funct($i+1, 2*$b+$c, $c*3); } else { print "$b, "; } } funct(0, 0, 1); print " ";

CROSSREFS

A116623, A116640, A116641, A213539, A226383

Sequence in context: A154811 A036237 A015948 * A140869 A111570 A057954

Adjacent sequences:  A119730 A119731 A119732 * A119734 A119735 A119736

KEYWORD

nonn

AUTHOR

William Entriken, Jun 14 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 26 13:00 EDT 2017. Contains 284126 sequences.