

A119733


Offsets of the terms of the nodes of the reverse Collatz function.


3



0, 1, 2, 5, 4, 7, 10, 19, 8, 11, 14, 23, 20, 29, 38, 65, 16, 19, 22, 31, 28, 37, 46, 73, 40, 49, 58, 85, 76, 103, 130, 211, 32, 35, 38, 47, 44, 53, 62, 89, 56, 65, 74, 101, 92, 119, 146, 227, 80, 89, 98, 125, 116, 143, 170, 251, 152, 179, 206, 287, 260, 341, 422, 665, 64, 67
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Create a binary tree starting with x. To follow 0 from the root, apply f(x)=2x. To follow 1, apply g(x)=(2x1)/3. For example, starting with x, the string 010 {also known as f(g(f(x)))}, you would get (8x2)/3. These expressions represent the reverse Collatz function and will provide numbers whose Collatz path may include x. These expressions will all be of the form (2^a*xb)/3^c. This sequence concerns b. What makes b interesting is that if you draw the tree, each level of the tree will have the same sequence of values for b. The root of the tree x, can be written as (2^0*x0)/3^0, which has the first value for b. Each subsequent level contains twice as many values of b.
This sequence is 0 followed by a permutation of A213539, and therefore consists of 0 plus the elements of A116640 multiplied by 2^k, where k >= 0. E.g., 1, 5, 7, 19 becomes 0, 2^0*1, 2^1*1, 2^0*5, 2^2*1, 2^0*7, 2^1*5, 2^0*19, ...  Joe Slater, Dec 19 2016
When this sequence is arranged as an irregular triangle the sum of each row a(2^k)...a(2^(k+1)1) equals A081039(2^k). The cumulative sum from a(0) to a(2^k1) equals A002697(k).  Joe Slater, Apr 12 2018


LINKS



FORMULA

a(0) = 0, a(2*n + 1) = 2*a(n) + 3^wt(n) = 2*a(n) + A048883(n), a(2*n) = 2*a(n), where wt(n) = A000120(n) = the number 1's in the binary representation of n.
a(k) = [z^k] 1 + (1/(1z)) * Sum_{s=0..n1} 2^s*z^(2^s)*(1  z^(2^s)) * Product_{r=s+1..n1} (1 + 3*z^(2^r)), for 0 < k <= 2^n1.  Wolfgang Hintze, Jul 28 2017
a(n) = Sum_{i=0..k} 2^e[i] * 3^i where binary expansion n = 2^e[0] + 2^e[1] + ... + 2^e[k] with descending e[0] > e[1] > ... > e[k] (A272011). [Martín Chabrera lemma 6.1, adapting index i]  Kevin Ryde, Oct 22 2021


EXAMPLE

a(1) = 1 = 2 * 0 + 3^0 since 0 written in binary contains no 1's.


MAPLE

a:= proc(n) `if`(n=0, 0, `if`(irem(n, 2, 'r')=0, 0,
3^add(i, i=convert(r, base, 2)))+2*a(r))
end:


MATHEMATICA

a[0] := 0; a[n_?OddQ] := 2a[(n  1)/2] + 3^Plus@@IntegerDigits[(n  1)/2, 2]; a[n_?EvenQ] := 2a[n/2]; Table[a[n], {n, 0, 65}] (* Alonso del Arte, Apr 21 2011 *)


PROG

(Perl) # call with n to get 2^n values
$depth=shift; sub funct { my ($i, $b, $c) = @_; if ($i < $depth) { funct($i+1, $b*2, $c); funct($i+1, 2*$b+$c, $c*3); } else { print "$b, "; } } funct(0, 0, 1); print " ";
(Python)
from sympy.core.cache import cacheit
@cacheit
def a(n): return 0 if n==0 else 2*a((n  1)//2) + 3**bin((n  1)//2).count('1') if n%2 else 2*a(n//2)
(PARI) a(n) = my(ret=0); if(n, for(i=0, logint(n, 2), if(bittest(n, i), ret=3*ret+1<<i))); ret; \\ Kevin Ryde, Oct 22 2021


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



