login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119730
Primes p such that p+1, p+2, p+3, p+4 and p+5 have equal number of divisors.
4
13781, 19141, 21493, 50581, 142453, 152629, 253013, 298693, 307253, 346501, 507781, 543061, 845381, 1079093, 1273781, 1354501, 1386901, 1492069, 1546261, 1661333, 1665061, 1841141, 2192933, 2208517, 2436341, 2453141, 2545013
OFFSET
1,1
LINKS
EXAMPLE
13781 is a term since 13782, 13783, 13784, 13785 and 13786 all have 8 divisors:
{1,2,3,6,2297,4594,6891,13782}, {1,7,11,77,179,1253,1969,13783},
{1,2,4,8,1723,3446,6892,13784}, {1,3,5,15,919,2757,4595,13785} and
{1,2,61,113,122,226,6893,13786}.
MATHEMATICA
Select[Prime@Range[1000000], DivisorSigma[0, #+1]==DivisorSigma[0, #+2]==DivisorSigma[0, #+3]==DivisorSigma[0, #+4]==DivisorSigma[0, #+5]&]
endQ[n_]:= Length[Union[DivisorSigma[0, (n + Range[5])]]]==1; Select[Prime[ Range[ 200000]], endQ] (* Harvey P. Dale, Jan 16 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Jul 29 2006
STATUS
approved