login
A119740
Primes p such that p+1, p+2, p+3, p+4, p+5 and p+6 have equal number of divisors.
4
298693, 346501, 1841141, 2192933, 2861461, 3106981, 3375781, 3435589, 3437813, 3865429, 4597013, 6191461, 7016213, 7074901, 7637941, 7918373, 9196309, 10216901, 12798901, 13747429, 14100661, 14171653, 14770981, 14779189
OFFSET
1,1
LINKS
EXAMPLE
298693 is a term since 298694, 298695, 298696, 298697, 298698 and 298699 all have 8 divisors:
{1,2,11,22,13577,27154,149347,298694}, {1,3,5,15,19913,59739,99565,298695},
{1,2,4,8,37337,74674,149348,298696}, {1,7,71,497,601,4207,42671,298697},
{1,2,3,6,49783,99566,149349,298698}, {1,19,79,199,1501,3781,15721,298699}.
MATHEMATICA
Select[Prime@Range[1000000], DivisorSigma[0, #+1]==DivisorSigma[0, #+2]==DivisorSigma[0, #+3]==DivisorSigma[0, #+4]==DivisorSigma[0, #+5]==DivisorSigma[0, #+6]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Jul 29 2006
STATUS
approved