The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118694 Semiprimes which are divisible by the product of their digits. 2
 4, 6, 9, 15, 111, 115, 1111, 1115, 11111, 1111111, 1111117, 111111115, 1111113111, 1111711111, 11111111111, 111111111115, 1111111111113, 1111117111111, 11171111111111, 1111111111711111, 1111711111111111, 11111111111111111 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The Mathematica coding is only good for multidigital, nonrepunits numbers. Obviously 4, 6 and 9 are members and so are A102782: Repunit semiprimes. - Robert G. Wilson v, Jun 10 2006 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..100 FORMULA a(n) = A001358(k): A007954(a(n)) | a(n). - R. J. Mathar, May 23 2006 EXAMPLE 115 is in the sequence because (1) it is a semiprime, (2) the product of its digits is 1*1*5=5 and (3) 115 is divisible by 5. MAPLE sp:= proc(n) evalb(2=add (i[2], i=ifactors(n) [2])) end: dp:= proc(n) local m; m:=n; 1; while m<>0 do %*irem(m, 10, 'm') od; % end: select(x-> irem(x, dp(x))=0 and sp(x), sort([{4, 6, 9, seq(seq(seq(parse(cat(1\$(k-j), t, 1\$j)), j=0..k), t=[1, 3, 5, 7]), k=1..20)} []]))[]; # Alois P. Heinz, Nov 17 2009 MATHEMATICA lst = {}; Do[ p = Times @@ IntegerDigits@n; If[ PrimeQ@p && PrimeQ[n/p], AppendTo[lst, n]; Print[n]], {n, 275*10^6}]; lst (* Robert G. Wilson v, Jun 10 2006 *) PROG (PARI) A007954(n)= { local(resul, ncpy); if(n<10, return(n) ); ncpy=n; resul = ncpy % 10; ncpy = (ncpy - ncpy%10)/10; while( ncpy > 0, resul *= ncpy %10; ncpy = (ncpy - ncpy%10)/10; ); return(resul); } { for(n=4, 50000000, if( bigomega(n)==2, dr=A007954(n); if(dr !=0 && n % dr == 0, print1(n, ", "); ); ); ); } \\ R. J. Mathar, May 23 2006 CROSSREFS Cf. A001358, A102782, A046413, A118693. Sequence in context: A136356 A136358 A115665 * A085648 A300131 A045114 Adjacent sequences:  A118691 A118692 A118693 * A118695 A118696 A118697 KEYWORD base,nonn AUTHOR Luc Stevens (lms022(AT)yahoo.com), May 20 2006 EXTENSIONS More terms from R. J. Mathar, May 23 2006 a(12) from Robert G. Wilson v, Jun 10 2006 Further terms from Alois P. Heinz, Nov 17 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 11:39 EDT 2020. Contains 334724 sequences. (Running on oeis4.)