

A136356


Increasing sequence obtained by union of two sequences A136353 and {b(n)}, where b(n) is the smallest composite number m such that m1 is prime and the set of distinct prime factors of m consists of the first n primes.


3



4, 6, 9, 15, 30, 105, 420, 1155, 2310, 15015, 30030, 255255, 1021020, 4849845, 19399380, 111546435, 669278610, 9704539845, 38818159380, 100280245065, 601681470390, 14841476269620, 18551845337025, 152125131763605
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This sequence is different from A070826 and A118750


LINKS

Table of n, a(n) for n=1..24.


EXAMPLE

a(4)=15 because k=2 and prime factors are 3 and 5; 15 is odd and n2=13, prime.


MATHEMATICA

Contribution from Farideh Firoozbakht, Aug 13 2009: (Start)
a[n_]:=(c=Product[Prime[k], {k, n}]; For[m=1, !(!PrimeQ[c*m]&&PrimeQ[c*m1]
&&Length[FactorInteger[c*m]]==n), m++ ]; c*m); b[n_]:=(c=Product[Prime[k],
{k, 2, n+1}]; For[m=1, !(!PrimeQ[c(2m1)]&&PrimeQ[c(2m1)2]&&Length[FactorInteger
[c(2*m1)]]==n), m++ ]; c(2m1)); Take[Union[Table[a[k], {k, 24}], Table[b[k],
{k, 24}]], 24] (End)


CROSSREFS

Cf. A136349A136355 A136357A136358 A070826 A118750.
Sequence in context: A118696 A065856 A136357 * A136358 A115665 A118694
Adjacent sequences: A136353 A136354 A136355 * A136357 A136358 A136359


KEYWORD

easy,nonn


AUTHOR

Enoch Haga, Dec 25 2007


EXTENSIONS

Edited, corrected and extended by Farideh Firoozbakht, Aug 13 2009


STATUS

approved



