login
A118394
Triangle T(n,k) = n!/(k!*(n-3*k)!), for n >= 3*k >= 0, read by rows.
3
1, 1, 1, 1, 6, 1, 24, 1, 60, 1, 120, 360, 1, 210, 2520, 1, 336, 10080, 1, 504, 30240, 60480, 1, 720, 75600, 604800, 1, 990, 166320, 3326400, 1, 1320, 332640, 13305600, 19958400, 1, 1716, 617760, 43243200, 259459200, 1, 2184, 1081080, 121080960, 1816214400
OFFSET
0,5
COMMENTS
Row sums form A118395.
Eigenvector is A118396.
FORMULA
E.g.f.: A(x,y) = exp(x + y*x^3).
EXAMPLE
Triangle begins:
1;
1;
1;
1, 6;
1, 24;
1, 60;
1, 120, 360;
1, 210, 2520;
1, 336, 10080;
1, 504, 30240, 60480;
1, 720, 75600, 604800;
1, 990, 166320, 3326400;
1, 1320, 332640, 13305600, 19958400;
...
MATHEMATICA
T[n_, k_] := n!/(k!(n-3k)!);
Table[T[n, k], {n, 0, 14}, {k, 0, Floor[n/3]}] // Flatten (* Jean-François Alcover, Nov 04 2020 *)
PROG
(PARI) T(n, k)=if(n<3*k || k<0, 0, n!/k!/(n-3*k)!)
(Sage)
f=factorial;
flatten([[f(n)/(f(k)*f(n-3*k)) for k in [0..n/3]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
(Magma)
F:= Factorial;
[F(n)/(F(k)*F(n-3*k)): k in [0..Floor(n/3)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
CROSSREFS
Cf. A118395 (row sums), A118396 (eigenvector).
Variants: A059344, A118931.
Sequence in context: A050300 A185678 A286893 * A365372 A278906 A281517
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, May 07 2006
STATUS
approved