login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365372
Array read by ascending antidiagonals: A(n, k) = n*(k*n^2 - 1) with k > 0.
1
0, 6, 1, 24, 14, 2, 60, 51, 22, 3, 120, 124, 78, 30, 4, 210, 245, 188, 105, 38, 5, 336, 426, 370, 252, 132, 46, 6, 504, 679, 642, 495, 316, 159, 54, 7, 720, 1016, 1022, 858, 620, 380, 186, 62, 8, 990, 1449, 1528, 1365, 1074, 745, 444, 213, 70, 9, 1320, 1990, 2178, 2040, 1708, 1290, 870, 508, 240, 78, 10
OFFSET
1,2
FORMULA
G.f.: x*y*(x^2*y + y - 2*x*(y - 3))/((1 - x)^4*(1 - y)^2).
1st column: A(n, 1) = A007531(n+1).
2nd row: A(2, n) = A017137(n-1).
EXAMPLE
The array begins:
0, 1, 2, 3, 4, 5, ...
6, 14, 22, 30, 38, 46, ...
24, 51, 78, 105, 132, 159, ...
60, 124, 188, 252, 316, 380, ...
120, 245, 370, 495, 620, 745, ...
210, 426, 642, 858, 1074, 1290, ...
...
MATHEMATICA
A[n_, k_]:=n(k n^2-1); Table[A[n-k+1, k], {n, 11}, {k, n}]//Flatten
CROSSREFS
Cf. A007531, A017137, A035328 (k=4), A058895 (main diagonal), A365373 (antidiagonal sums).
Sequence in context: A185678 A286893 A118394 * A278906 A281517 A338865
KEYWORD
nonn,easy,tabl
AUTHOR
Stefano Spezia, Sep 02 2023
STATUS
approved