login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118396
Eigenvector of triangle A118394; E.g.f.: exp( Sum_{n>=0} x^(3^n) ).
4
1, 1, 1, 7, 25, 61, 481, 2731, 10417, 454105, 4309921, 23452111, 592433161, 6789801877, 46254009985, 893881991731, 11548704851041, 93501748795441, 4828847934591937, 83867376656907415, 823025819684123641, 33409213329178701421, 640457721676922946721
OFFSET
0,4
COMMENTS
E.g.f. of triangle A118394 is: exp(x+y*x^3), where A118394(n,k) = n!/k!/(n-3*k)!. More generally, given a triangle with e.g.f.: exp(x+y*x^b), the eigenvector will have e.g.f.: exp( Sum_{n>=0} x^(b^n) ).
LINKS
FORMULA
a(n) = Sum_{k=0..[n/3]} n!/k!/(n-3*k)! *a(k) for n>=0, with a(0)=1.
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add((j-> j!*
a(n-j)*binomial(n-1, j-1))(3^i), i=0..ilog[3](n)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 01 2017
MATHEMATICA
a[n_] := a[n] = If[n==0, 1, Sum[Function[j, j! a[n-j] Binomial[n-1, j-1]][3^i], {i, 0, Log[3, n]}]];
a /@ Range[0, 25] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
PROG
(PARI) {a(n)=n!*polcoeff(exp(sum(k=0, ceil(log(n+1)/log(3)), x^(3^k))+x*O(x^n)), n)}
CROSSREFS
Cf. A118394, A118395; variants: A118393, A118932.
Sequence in context: A372371 A344560 A118395 * A330044 A193375 A362523
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 07 2006
STATUS
approved