login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118092
Odd primes raised to odd prime powers.
1
27, 125, 243, 343, 1331, 2187, 2197, 3125, 4913, 6859, 12167, 16807, 24389, 29791, 50653, 68921, 78125, 79507, 103823, 148877, 161051, 177147, 205379, 226981, 300763, 357911, 371293, 389017, 493039, 571787, 704969, 823543, 912673, 1030301
OFFSET
1,1
COMMENTS
Subset of A053810 Prime powers of prime numbers. Subset of A000961 Prime powers. Subsets include A030078 Cubes of primes, A050997 Fifth powers of primes.
FORMULA
{p^q where p is in A065091 and q is in A065091}.
Sum_{n>=1} 1/a(n) = Sum_{p odd prime} P(p) - A051006 + 1/4 = 0.054745292329555814476..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 13 2024
MATHEMATICA
With[{prs=Prime[Range[2, 30]]}, Take[Union[First[#]^Last[#]&/@ Tuples[prs, 2]], 40]] (* Harvey P. Dale, Dec 23 2011 *)
PROG
(Python)
from sympy import primepi, integer_nthroot, primerange
def A118092(n):
def f(x): return int(n+x-sum(primepi(integer_nthroot(x, p)[0])-1 for p in primerange(3, x.bit_length())))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f, n, n) # Chai Wah Wu, Sep 12 2024
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 11 2006
EXTENSIONS
Extended by Ray Chandler, Oct 28 2008
STATUS
approved