login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125497
Evil cubes.
1
0, 27, 125, 216, 343, 729, 1000, 1331, 1728, 2744, 3375, 4913, 5832, 6859, 8000, 9261, 10648, 13824, 19683, 21952, 27000, 29791, 35937, 39304, 46656, 50653, 54872, 59319, 64000, 68921, 74088, 85184, 103823, 110592, 148877, 157464, 166375
OFFSET
1,2
LINKS
EXAMPLE
125 is in the sequence because 5^3 = 125 and its representation in base 2 (1111101) has an even number of 1's.
MAPLE
a:=proc(k) local k2: k2:=convert(k^3, base, 2): if add(k2[j], j=1..nops(k2)) mod 2=0 then k^3 else fi end: seq(a(k), k=1..70); # Emeric Deutsch, Jan 01 2007
isA001969 := proc(n) local b2 ; b2 := convert(n, base, 2) ; if sum(op(i, b2), i=1..nops(b2)) mod 2 = 0 then RETURN(true) ; else RETURN(false) ; fi ; end : for n from 1 to 80 do if isA001969(n^3) then printf("%d, ", n^3) ; fi ; od ; # R. J. Mathar, Jan 07 2007
MATHEMATICA
Select[Range[0, 55]^3, EvenQ @ DigitCount[#, 2][[1]] &] (* Amiram Eldar, Dec 09 2019 *)
CROSSREFS
Intersection of A000578 (cubes) and A001969 (evil numbers).
Sequence in context: A145555 A293894 A137800 * A179145 A369118 A118092
KEYWORD
base,nonn
AUTHOR
Tanya Khovanova, Dec 27 2006
EXTENSIONS
More terms from Emeric Deutsch, Jan 01 2007
More terms from R. J. Mathar, Jan 07 2007
a(1) = 0 inserted by Amiram Eldar, Dec 09 2019
STATUS
approved