login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117903
Diagonal sums of number triangle A117901.
2
1, -1, 1, -2, 4, -2, -5, 14, -5, -26, 64, -26, -101, 254, -101, -410, 1024, -410, -1637, 4094, -1637, -6554, 16384, -6554, -26213, 65534, -26213, -104858, 262144, -104858, -419429
OFFSET
0,4
FORMULA
G.f.: (1+x^2-5*x^3+3*x^4-3*x^5-x^6-2*x^7)/((1-4*x^3)*(1+x+x^2+x^3+x^4+x^5)).
a(n) = -a(n-1) -a(n-2) +3*a(n-3) +3*a(n-4) +3*a(n-5) +4*a(n-6) +4*a(n-7) +4*a(n-8).
a(n) = (1/30)*(28*(-1)^n + (15*(-1)^n - 1)*A057079(n) - 6*(2*A133851(n) - 5*A133851(n-1) + 2*A133851(n-2))). - G. C. Greubel, Oct 09 2021
MATHEMATICA
LinearRecurrence[{-1, -1, 3, 3, 3, 4, 4, 4}, {1, -1, 1, -2, 4, -2, -5, 14}, 40] (* Harvey P. Dale, Oct 04 2021 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^2-5*x^3+3*x^4-3*x^5-x^6-2*x^7)/((1-4*x^3)*(1+x+x^2+x^3+x^4+x^5)) )); // G. C. Greubel, Oct 09 2021
(Sage)
def A133851(n): return 4^(n/3) if (n%3==0) else 0
def A057079(n): return chebyshev_U(n, 1/2) + chebyshev_U(n-1, 1/2)
def A117903(n): return (1/30)*(28*(-1)^n + (15*(-1)^n - 1)* A057079(n) - 6*(2*A133851(n) - 5*A133851(n-1) + 2*A133851(n-2)))
[A117903(n) for n in (0..50)] # G. C. Greubel, Oct 09 2021
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Apr 01 2006
STATUS
approved