login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268740
T(n,k)=Number of nXk binary arrays with some 1 horizontally or vertically adjacent to some other 1 exactly once.
7
0, 1, 1, 2, 4, 2, 5, 15, 15, 5, 10, 48, 80, 48, 10, 20, 145, 396, 396, 145, 20, 38, 420, 1788, 2876, 1788, 420, 38, 71, 1183, 7831, 19591, 19591, 7831, 1183, 71, 130, 3264, 33170, 128232, 200204, 128232, 33170, 3264, 130, 235, 8865, 137868, 816009, 1971414
OFFSET
1,4
COMMENTS
Table starts
...0.....1.......2.........5..........10............20.............38
...1.....4......15........48.........145...........420...........1183
...2....15......80.......396........1788..........7831..........33170
...5....48.....396......2876.......19591........128232.........816009
..10...145....1788.....19591......200204.......1971414.......18847982
..20...420....7831....128232.....1971414......29134076......418632185
..38..1183...33170....816009....18847982.....418632185.....9039552112
..71..3264..137868...5087814...176668038....5894815754...191307160577
.130..8865..563486..31228804..1629738420...81718671716..3985770068310
.235.23780.2275119.189328186.14851460143.1119014223138.82030747371058
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3) -a(n-4)
k=3: a(n) = 4*a(n-1) +8*a(n-2) -24*a(n-3) -38*a(n-4) +4*a(n-5) +12*a(n-6) -a(n-8)
k=4: [order 10]
k=5: [order 18]
k=6: [order 22]
k=7: [order 42]
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..1. .0..0..0..1. .0..1..0..1. .0..0..1..0. .0..1..0..0
..1..0..0..0. .1..0..0..0. .0..0..0..1. .1..1..0..0. .1..0..0..1
..0..1..0..1. .0..1..1..0. .0..0..0..0. .0..0..1..0. .0..1..1..0
..0..0..0..1. .1..0..0..0. .1..0..1..0. .0..0..0..0. .1..0..0..0
CROSSREFS
Column 1 is A001629.
Column 2 is A093967.
Sequence in context: A202395 A117903 A167685 * A120493 A085880 A055883
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 12 2016
STATUS
approved