login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117880
a(1) = 4; a(n) is smallest semiprime > 2*a(n-1).
0
4, 9, 21, 46, 93, 187, 377, 755, 1513, 3027, 6059, 12127, 24257, 48529, 97059, 194127, 388257, 776515, 1553033, 3106083, 6212177, 12424355, 24848723, 49697447, 99394909, 198789819, 397579639, 795159283, 1590318573, 3180637153
OFFSET
1,1
COMMENTS
a(1)=4, a(n)=2*a(n-1)+k, where k is least positive integer chosen so that a(n) is the product of two primes. Corresponding k's are 1, 3, 4, 1, 1, 3, 1, 3, 1, 5, 9, 3, 15, 1, 9, 3, 1, 3, 17, 11, 1, 13, 1, 15, 1, 1, 5, 7, 7, 11, 5, 5, 15, 1, 3, 9, 9, 5, 7, 8, ... - Zak Seidov, Dec 24 2007
EXAMPLE
a(1)=4, then
k=1, a(2)=2*4+1=9,
k=3, a(3)=2*9+3=21,
k=4, a(4)=2*21+4=46,
k=1, a(5)=2*46+1=93,
k=1, a(6)=2*93+1=187.
MATHEMATICA
a=4; Do[Do[b=2a+n; If[2==Plus@@FactorInteger[b][[All, 2]], Print[{b, n}]; Break[]], {n, 1000}]; a=b, {40}] - Zak Seidov, Dec 24 2007
ssp[n_]:=Module[{k=2n+1}, While[PrimeOmega[k]!=2, k++]; k]; NestList[ssp, 4, 30] (* Harvey P. Dale, Apr 14 2022 *)
CROSSREFS
Semiprime analog of A055496.
Sequence in context: A009914 A048638 A144527 * A027973 A348407 A103040
KEYWORD
easy,nonn,less
AUTHOR
Jonathan Vos Post, May 04 2006
EXTENSIONS
Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar
STATUS
approved