login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117878
Triangle T(n,k) = A034386(n)*A049614(k) - 1 read by rows.
1
0, 1, 1, 5, 5, 5, 5, 5, 5, 23, 29, 29, 29, 119, 119, 29, 29, 29, 119, 119, 719, 209, 209, 209, 839, 839, 5039, 5039, 209, 209, 209, 839, 839, 5039, 5039, 40319, 209, 209, 209, 839, 839, 5039, 5039, 40319, 362879, 209, 209, 209, 839, 839, 5039, 5039, 40319, 362879
OFFSET
1,4
FORMULA
T(n, k) = A034386(n)*A049614(k) - 1.
T(n, k) = k! * A034386(n)/A034386(k) - 1 = n! * A049614(k)/A049614(n) - 1. - G. C. Greubel, Feb 06 2021
EXAMPLE
The triangle starts in row n=1 as:
0;
1, 1;
5, 5, 5;
5, 5, 5, 23;
29, 29, 29, 119, 119;
29, 29, 29, 119, 119, 719;
209, 209, 209, 839, 839, 5039, 5039;
209, 209, 209, 839, 839, 5039, 5039, 40319;
209, 209, 209, 839, 839, 5039, 5039, 40319, 362879;
209, 209, 209, 839, 839, 5039, 5039, 40319, 362879, 3628799;
MATHEMATICA
A034386[n_]:= Product[Prime[i], {i, PrimePi[n]}];
A049614[n_]:= n!/A034386[n];
Table[A034386[n]*A049614[k] - 1, {n, 10}, {k, n}]//Flatten (* G. C. Greubel, Feb 06 2021 *)
PROG
(Sage)
def A034386(n): return product( nth_prime(j) for j in (1..prime_pi(n)) )
def A117878(n, k): return factorial(k)*A034386(n)/A034386(k) - 1
flatten([[A117878(n, k) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Feb 06 2021
CROSSREFS
Sequence in context: A372613 A355588 A289119 * A291497 A241154 A094636
KEYWORD
nonn,tabl,less
AUTHOR
Roger L. Bagula, May 02 2006
EXTENSIONS
Index in definition and offset corrected by Assoc. Eds. of the OEIS - Jun 15 2010
STATUS
approved