login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 4; a(n) is smallest semiprime > 2*a(n-1).
0

%I #10 Apr 14 2022 10:40:32

%S 4,9,21,46,93,187,377,755,1513,3027,6059,12127,24257,48529,97059,

%T 194127,388257,776515,1553033,3106083,6212177,12424355,24848723,

%U 49697447,99394909,198789819,397579639,795159283,1590318573,3180637153

%N a(1) = 4; a(n) is smallest semiprime > 2*a(n-1).

%C a(1)=4, a(n)=2*a(n-1)+k, where k is least positive integer chosen so that a(n) is the product of two primes. Corresponding k's are 1, 3, 4, 1, 1, 3, 1, 3, 1, 5, 9, 3, 15, 1, 9, 3, 1, 3, 17, 11, 1, 13, 1, 15, 1, 1, 5, 7, 7, 11, 5, 5, 15, 1, 3, 9, 9, 5, 7, 8, ... - _Zak Seidov_, Dec 24 2007

%e a(1)=4, then

%e k=1, a(2)=2*4+1=9,

%e k=3, a(3)=2*9+3=21,

%e k=4, a(4)=2*21+4=46,

%e k=1, a(5)=2*46+1=93,

%e k=1, a(6)=2*93+1=187.

%t a=4;Do[Do[b=2a+n;If[2==Plus@@FactorInteger[b][[All,2]],Print[{b,n}];Break[]],{n,1000}];a=b,{40}] - _Zak Seidov_, Dec 24 2007

%t ssp[n_]:=Module[{k=2n+1},While[PrimeOmega[k]!=2,k++];k]; NestList[ssp,4,30] (* _Harvey P. Dale_, Apr 14 2022 *)

%Y Semiprime analog of A055496.

%Y Cf. A001358, A076656.

%K easy,nonn,less

%O 1,1

%A _Jonathan Vos Post_, May 04 2006

%E Edited by _N. J. A. Sloane_, Jul 01 2008 at the suggestion of _R. J. Mathar_