The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117816 Number of steps until the RADD sequence T(k+1) = n + R(T(k)), T(0) = 1, enters a cycle; -1 if no cycle is ever reached. (R=A004086: reverse digits) 73
 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 2, 31, 15, -1, 721, 9, 1, 6, -1, 3, 5, 28, 29, 131, 23, 1, 31, 6, -1, 1, 19, 1, 53, 4, 406, 34, 254, 8, -1, 3, 245, 1, 3, 2, 422, 42, 308, 1, -1, 2, 2, 49, 1, 1371, 13, 1, 1, 2, -1, 78, 65, 1, 809, 1575, 5, 43, 31, 2, -1, 33, 2, 21, 192, 857, 91, 1, 2, 2, -1, 2, 491, 1, 2, 1, 81, 49, 1, 2, -1, 35, 197, 72, 1, 12, 79, 1, 6004, 1, -1, 52, 10264, 9, 28, 2, 2, 1, 427, 1, -1, 1, 1, 49, 167 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,12 COMMENTS Comments following discussions with David Applegate, May 05 2006: (Start) Certainly a(10) = -1 and probably a(n) is always -1 if n is a multiple of 10. Furthermore a(15) is almost certainly -1: T_15 has not reached a cycle in 10^7 terms (see A118532). (End) If n is a multiple of 10 the operation can never generate a trailing zero and so is reversible. So it loops only if it returns to the start, which is impossible. Hence a(10k) = -1. - Martin Fuller, May 12 2006 I suspect a(115) = 385592406, A117817(115) = 79560. Can someone confirm? - Martin Fuller, May 12 2006 The map f: x -> R(x)+n is injective, f(x)=f(y) <=> R(x)=R(y) <=> x=y, unless x or y only differ in trailing zeros. For n=10k, however, trailing zeros can never occur. (This also implies that the terms are of increasing length.) Thus, for n=10k, no number can occur twice in the orbit of 1 under f, i.e., a(10k)=-1. A sketch of proof for a(15)=-1 is given in A118532. As of today, no other n with a(n)=-1 seems to be known. - M. F. Hasler, May 06 2012 LINKS Table of n, a(n) for n=1..114. N. J. A. Sloane and others, Sequences of RADD type, OEIS wiki. EXAMPLE T_2 enters a cycle of length 81 after 1 step. MATHEMATICA ReverseNum[n_] := FromDigits[Reverse[IntegerDigits[n]]]; maxLen=10000; Table[z=1; lst={1}; While[z=ReverseNum[z]+n; !MemberQ[lst, z] && Length[lst]

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 02:54 EDT 2024. Contains 371887 sequences. (Running on oeis4.)