login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117178
Riordan array (c(x^2)/sqrt(1-4*x^2), x*c(x^2)), c(x) the g.f. of A000108.
3
1, 0, 1, 3, 0, 1, 0, 4, 0, 1, 10, 0, 5, 0, 1, 0, 15, 0, 6, 0, 1, 35, 0, 21, 0, 7, 0, 1, 0, 56, 0, 28, 0, 8, 0, 1, 126, 0, 84, 0, 36, 0, 9, 0, 1, 0, 210, 0, 120, 0, 45, 0, 10, 0, 1, 462, 0, 330, 0, 165, 0, 55, 0, 11, 0, 1, 0, 792, 0, 495, 0, 220, 0, 66, 0, 12, 0, 1
OFFSET
0,4
COMMENTS
Row sums are A058622(n+1). Diagonal sums are A001791(n+1), with interpolated zeros. Inverse is A117179.
De-aerated and rows reversed, this matrix apparently becomes A014462. The nonzero antidiagonals are embedded in several entries and apparently contain partial sums of previous nonzero antidiagonals. - Tom Copeland, May 30 2017
FORMULA
T(n,k) = C(n+1, (n-k)/2) * (1 + (-1)^(n-k))/2.
Column k has e.g.f. Bessel_I(k,2x) + Bessel_I(k+2, 2x).
From G. C. Greubel, Aug 08 2022: (Start)
Sum_{k=0..n} T(n, k) = A058622(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = ((1+(-1)^n)/2) * A001791((n+2)/2).
T(2*n, n) = ((1+(-1)^n)/2) * A052203(n/2).
T(2*n+1, n) = ((1-(-1)^n)/2) * A224274((n+1)/2).
T(2*n-1, n-1) = ((1+(-1)^n)/2) * A224274(n/2). (End)
EXAMPLE
Triangle begins
1;
0, 1;
3, 0, 1;
0, 4, 0, 1;
10, 0, 5, 0, 1;
0, 15, 0, 6, 0, 1;
35, 0, 21, 0, 7, 0, 1;
0, 56, 0, 28, 0, 8, 0, 1;
126, 0, 84, 0, 36, 0, 9, 0, 1;
MATHEMATICA
T[n_, k_]:= Binomial[n+1, (n-k)/2]*(1+(-1)^(n-k))/2;
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 08 2022 *)
PROG
(Magma) [(1+(-1)^(n-k))*Binomial(n+1, Floor((n-k)/2))/2: k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 08 2022
(SageMath)
def A117178(n, k): return (1 + (-1)^(n-k))*binomial(n+1, (n-k)//2)/2
flatten([[A117178(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Aug 08 2022
CROSSREFS
Sequence in context: A049769 A117179 A111526 * A111527 A035695 A100257
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Mar 01 2006
STATUS
approved