login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116886
Primes p that remain prime through at least 2 iterations of the function f(p) = p^2 + 4.
5
3, 17, 103, 137, 277, 313, 677, 743, 1117, 1627, 2003, 2143, 3407, 3677, 4483, 5087, 5903, 7177, 7333, 8087, 8093, 8147, 8537, 8573, 9293, 9473, 10177, 10477, 11173, 13807, 14897, 15107, 16657, 19753, 21563, 22307, 24113, 26113, 26417, 26633
OFFSET
1,1
COMMENTS
Numbers p with the property that p, q = p^2 + 4, and r = q^2 + 4 are all prime. - Zak Seidov, Sep 08 2009
a(n) = sqrt(A165218(n) - 4). - Zak Seidov, Sep 08 2009
EXAMPLE
17 is prime, 17^2 + 4 = 293 is prime and 293^2 + 4 = 85853 is prime.
MATHEMATICA
Select[Prime[Range[2*7! ]], PrimeQ[ #^2+4]&&PrimeQ[(#^2+4)^2+4]&] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2010 *)
fQ[n_]:=AllTrue[Rest[NestList[#^2+4&, n, 2]], PrimeQ]; Select[Prime[ Range[ 3000]], fQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 21 2014 *)
PROG
(PARI) is(n)=my(q); isprime(p) && isprime(q=p^2+4) && isprime(q^2+4) \\ Charles R Greathouse IV, Nov 06 2013
KEYWORD
nonn
AUTHOR
Giovanni Resta, Feb 27 2006
EXTENSIONS
Edited by N. J. A. Sloane, Sep 18 2009 at the suggestion of R. J. Mathar
STATUS
approved