login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116665
Total number of parts that appear exactly once in the partitions of n into odd parts.
2
0, 1, 0, 1, 2, 2, 3, 4, 6, 7, 10, 12, 16, 20, 25, 31, 39, 47, 58, 71, 85, 103, 124, 148, 176, 210, 248, 293, 345, 405, 474, 555, 645, 751, 872, 1009, 1166, 1346, 1549, 1781, 2044, 2341, 2678, 3060, 3488, 3973, 4520, 5132, 5822, 6597, 7464, 8436, 9525, 10740
OFFSET
0,5
COMMENTS
a(n) = Sum(k*A116664(n,k), k>=0).
LINKS
FORMULA
G.f.: x(1-x+x^2)/[(1-x^4)product(1-x^(2j-1), j=1..infinity)].
a(n) ~ 3^(1/4) * exp(sqrt(n/3)*Pi) / (8*Pi*n^(1/4)). - Vaclav Kotesovec, Mar 07 2016
EXAMPLE
a(8) = 6 because in the partitions of 8 into odd parts, namely, [(7),(1)], [(5),(3)], [(5),1,1,1], [3,3,1,1], [(3),1,1,1,1,1] and [1,1,1,1,1,1,1,1], we have 6 parts that appear exactly once (shown between parentheses).
MAPLE
f:=x*(1-x+x^2)/(1-x^4)/product(1-x^(2*j-1), j=1..40): fser:=series(f, x=0, 61): seq(coeff(fser, x, n), n=0..57);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, 0, add((p-> p+`if`(j=1, [0, p[1]], 0))
(b(n-i*j, i-2)), j=0..n/i)))
end:
a:= n-> b(n, n-irem(n+1, 2))[2]:
seq(a(n), n=0..60); # Alois P. Heinz, Mar 16 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, Sum[Function[{p}, p + If[j == 1, {0, p[[1]]}, 0]][b[n-i*j, i-2]], {j, 0, n/i}]]]; a[n_] := b[n, n - Mod[n+1, 2]][[2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 13 2015, after Alois P. Heinz *)
nmax = 60; CoefficientList[Series[x*(1-x+x^2)/(1-x^4) * Product[1/(1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)
CROSSREFS
Cf. A116664.
Sequence in context: A082538 A035939 A365827 * A122135 A339572 A027194
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 22 2006
STATUS
approved