login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116666
Triangle, row sums = number of edges in n-dimensional hypercubes.
5
1, 1, 3, 1, 6, 5, 1, 9, 15, 7, 1, 12, 30, 28, 9, 1, 15, 50, 70, 45, 11, 1, 18, 75, 140, 135, 66, 13, 1, 21, 105, 245, 315, 231, 91, 15, 1, 24, 140, 392, 630, 616, 364, 120, 17, 1, 27, 180, 588, 1134, 1386, 1092, 540, 153, 19, 1, 30, 225, 840, 1890, 2772
OFFSET
1,3
COMMENTS
Terms in the array rows tend to A001787, number of edges in n-dimensional hypercubes: 1, 4, 12, 32, 80, 192, 448... Row sums of the sequence also = A001787.
LINKS
FORMULA
From an array, rows = binomial transforms of (1,0,0,0...); (1,3,0,0,0...); (1,3,5,0,0,0...); difference rows of the columns become rows of the triangle.
T(n,k) = binomial(n,k-1) * (2*k - 1), 1 <= k <= n. - Reinhard Zumkeller, Nov 02 2013
EXAMPLE
First few rows of the array are:
1 1 1 1 1...
1 4 7 10 13...
1 4 12 25 43...
1 4 12 32 71...
1 4 12 32 80...
...
Then take differences of columns which become rows of the triangle:
1;
1, 3;
1, 6, 5;
1, 9, 15, 7;
1, 12, 30, 28, 9;
1, 15, 50, 70, 45, 11;
1, 18, 75, 140, 135, 66, 13;
1, 21, 105, 245, 315, 231, 91, 15;
...
MAPLE
seq(seq(binomial(n, k-1)*(2*k-1), k=1..n+1), n=0..100); # Muniru A Asiru, Jan 30 2018
MATHEMATICA
Table[Binomial[n, k]*(2*k+1), {n, 0, 10}, {k, 0, n}] (* G. C. Greubel, Jan 29 2018 *)
PROG
(Haskell)
a116666 n k = a116666_tabl !! (n-1) !! (k-1)
a116666_row n = a116666_tabl !! (n-1)
a116666_tabl = zipWith (zipWith (*)) a007318_tabl a158405_tabl
-- Reinhard Zumkeller, Nov 02 2013
(PARI) for(n=0, 10, for(k=0, n, print1(binomial(n, k)*(2*k+1), ", "))) \\ G. C. Greubel, Jan 29 2018
(Magma) /* As triangle */ [[(2*k+1)*Binomial(n, k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jan 29 2018
(GAP) Flat(List([0..100], n->List([1..n+1], k->Binomial(n, k-1)*(2*k-1)))); # Muniru A Asiru, Jan 30 2018
CROSSREFS
Cf. A001787.
Cf. A007318, A005408, A002457 (central terms).
Sequence in context: A016575 A308948 A225246 * A208331 A061702 A112351
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Feb 22 2006
STATUS
approved