OFFSET
1,3
COMMENTS
LINKS
Reinhard Zumkeller, Rows n = 1..125 of table, flattened
FORMULA
From an array, rows = binomial transforms of (1,0,0,0...); (1,3,0,0,0...); (1,3,5,0,0,0...); difference rows of the columns become rows of the triangle.
T(n,k) = binomial(n,k-1) * (2*k - 1), 1 <= k <= n. - Reinhard Zumkeller, Nov 02 2013
EXAMPLE
First few rows of the array are:
1 1 1 1 1...
1 4 7 10 13...
1 4 12 25 43...
1 4 12 32 71...
1 4 12 32 80...
...
Then take differences of columns which become rows of the triangle:
1;
1, 3;
1, 6, 5;
1, 9, 15, 7;
1, 12, 30, 28, 9;
1, 15, 50, 70, 45, 11;
1, 18, 75, 140, 135, 66, 13;
1, 21, 105, 245, 315, 231, 91, 15;
...
MAPLE
seq(seq(binomial(n, k-1)*(2*k-1), k=1..n+1), n=0..100); # Muniru A Asiru, Jan 30 2018
MATHEMATICA
Table[Binomial[n, k]*(2*k+1), {n, 0, 10}, {k, 0, n}] (* G. C. Greubel, Jan 29 2018 *)
PROG
(Haskell)
a116666 n k = a116666_tabl !! (n-1) !! (k-1)
a116666_row n = a116666_tabl !! (n-1)
a116666_tabl = zipWith (zipWith (*)) a007318_tabl a158405_tabl
-- Reinhard Zumkeller, Nov 02 2013
(PARI) for(n=0, 10, for(k=0, n, print1(binomial(n, k)*(2*k+1), ", "))) \\ G. C. Greubel, Jan 29 2018
(Magma) /* As triangle */ [[(2*k+1)*Binomial(n, k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jan 29 2018
(GAP) Flat(List([0..100], n->List([1..n+1], k->Binomial(n, k-1)*(2*k-1)))); # Muniru A Asiru, Jan 30 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Feb 22 2006
STATUS
approved