login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle, row sums = number of edges in n-dimensional hypercubes.
5

%I #14 Sep 08 2022 08:45:24

%S 1,1,3,1,6,5,1,9,15,7,1,12,30,28,9,1,15,50,70,45,11,1,18,75,140,135,

%T 66,13,1,21,105,245,315,231,91,15,1,24,140,392,630,616,364,120,17,1,

%U 27,180,588,1134,1386,1092,540,153,19,1,30,225,840,1890,2772

%N Triangle, row sums = number of edges in n-dimensional hypercubes.

%C Terms in the array rows tend to A001787, number of edges in n-dimensional hypercubes: 1, 4, 12, 32, 80, 192, 448... Row sums of the sequence also = A001787.

%H Reinhard Zumkeller, <a href="/A116666/b116666.txt">Rows n = 1..125 of table, flattened</a>

%F From an array, rows = binomial transforms of (1,0,0,0...); (1,3,0,0,0...); (1,3,5,0,0,0...); difference rows of the columns become rows of the triangle.

%F T(n,k) = binomial(n,k-1) * (2*k - 1), 1 <= k <= n. - _Reinhard Zumkeller_, Nov 02 2013

%e First few rows of the array are:

%e 1 1 1 1 1...

%e 1 4 7 10 13...

%e 1 4 12 25 43...

%e 1 4 12 32 71...

%e 1 4 12 32 80...

%e ...

%e Then take differences of columns which become rows of the triangle:

%e 1;

%e 1, 3;

%e 1, 6, 5;

%e 1, 9, 15, 7;

%e 1, 12, 30, 28, 9;

%e 1, 15, 50, 70, 45, 11;

%e 1, 18, 75, 140, 135, 66, 13;

%e 1, 21, 105, 245, 315, 231, 91, 15;

%e ...

%p seq(seq(binomial(n,k-1)*(2*k-1), k=1..n+1),n=0..100); # _Muniru A Asiru_, Jan 30 2018

%t Table[Binomial[n,k]*(2*k+1), {n,0,10}, {k,0,n}] (* _G. C. Greubel_, Jan 29 2018 *)

%o (Haskell)

%o a116666 n k = a116666_tabl !! (n-1) !! (k-1)

%o a116666_row n = a116666_tabl !! (n-1)

%o a116666_tabl = zipWith (zipWith (*)) a007318_tabl a158405_tabl

%o -- _Reinhard Zumkeller_, Nov 02 2013

%o (PARI) for(n=0,10, for(k=0,n, print1(binomial(n,k)*(2*k+1), ", "))) \\ _G. C. Greubel_, Jan 29 2018

%o (Magma) /* As triangle */ [[(2*k+1)*Binomial(n,k): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Jan 29 2018

%o (GAP) Flat(List([0..100],n->List([1..n+1],k->Binomial(n,k-1)*(2*k-1)))); # _Muniru A Asiru_, Jan 30 2018

%Y Cf. A001787.

%Y Cf. A007318, A005408, A002457 (central terms).

%K nonn,tabl

%O 1,3

%A _Gary W. Adamson_, Feb 22 2006