login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of parts that appear exactly once in the partitions of n into odd parts.
2

%I #14 Mar 07 2016 05:44:01

%S 0,1,0,1,2,2,3,4,6,7,10,12,16,20,25,31,39,47,58,71,85,103,124,148,176,

%T 210,248,293,345,405,474,555,645,751,872,1009,1166,1346,1549,1781,

%U 2044,2341,2678,3060,3488,3973,4520,5132,5822,6597,7464,8436,9525,10740

%N Total number of parts that appear exactly once in the partitions of n into odd parts.

%C a(n) = Sum(k*A116664(n,k), k>=0).

%H Alois P. Heinz, <a href="/A116665/b116665.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: x(1-x+x^2)/[(1-x^4)product(1-x^(2j-1), j=1..infinity)].

%F a(n) ~ 3^(1/4) * exp(sqrt(n/3)*Pi) / (8*Pi*n^(1/4)). - _Vaclav Kotesovec_, Mar 07 2016

%e a(8) = 6 because in the partitions of 8 into odd parts, namely, [(7),(1)], [(5),(3)], [(5),1,1,1], [3,3,1,1], [(3),1,1,1,1,1] and [1,1,1,1,1,1,1,1], we have 6 parts that appear exactly once (shown between parentheses).

%p f:=x*(1-x+x^2)/(1-x^4)/product(1-x^(2*j-1),j=1..40): fser:=series(f,x=0,61): seq(coeff(fser,x,n),n=0..57);

%p # second Maple program:

%p b:= proc(n, i) option remember; `if`(n=0, [1, 0],

%p `if`(i<1, 0, add((p-> p+`if`(j=1, [0, p[1]], 0))

%p (b(n-i*j, i-2)), j=0..n/i)))

%p end:

%p a:= n-> b(n, n-irem(n+1, 2))[2]:

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 16 2014

%t b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, Sum[Function[{p}, p + If[j == 1, {0, p[[1]]}, 0]][b[n-i*j, i-2]], {j, 0, n/i}]]]; a[n_] := b[n, n - Mod[n+1, 2]][[2]]; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, May 13 2015, after _Alois P. Heinz_ *)

%t nmax = 60; CoefficientList[Series[x*(1-x+x^2)/(1-x^4) * Product[1/(1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Mar 07 2016 *)

%Y Cf. A116664.

%K nonn

%O 0,5

%A _Emeric Deutsch_, Feb 22 2006