login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116576
Number of distinct squares D(n) in the n-th iterate of the tribonacci morphism (a -> ab, b -> ac, c -> a) on the letter a.
0
2, 7, 17, 35, 69, 132, 248, 462, 856, 1581, 2915, 5369, 9883, 18186, 33458, 61548, 113214, 208243, 383029, 704511, 1295809, 2383376, 4383724, 8062938, 14830068, 27276761, 50169799, 92276661, 169723255, 312169750, 574169702, 1056062744
OFFSET
4,1
COMMENTS
See the cited reference (A. Glen) for similar sequences associated to the k-bonacci morphism and particular episturmian (infinite) words.
REFERENCES
Amy Glen, On Sturmian and episturmian words and related topics, Ph.D. Thesis, The University of Adelaide (Australia), April 2006.
FORMULA
For n >= 6, D(n) = d(n-5) + d(n-6) + 1 + Sum (d(m) + 1), m = 0 ... (n-3), where d(m) = (T(m+1) + T(m-1) - 1)/2 - 1 and the T(m) are the tribonacci numbers: (T(0), T(1), T(2), ...) = (1, 2, 4, 7, 13, ...).
Empirical G.f.: x^4*(2*x^3-x-2) / ((x-1)^2*(x^3+x^2+x-1)). [Colin Barker, Dec 02 2012]
EXAMPLE
D(4) = 2 because the 4th iterate of the tribonacci morphism on a is abacabaabacab, which contains the two squares aa and abaaba.
D(5) = 7 because the 5th iterate of the tribonacci morphism on a is abacabaabacababacabaabac, which contains the square of each of the following seven strings: a, ab, ba, aba, abacab, bacaba, abacaba.
MATHEMATICA
a[1] = 1; a[2] = 2; a[3] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3]; b[1] = 0; b[n_] := b[n] = (a[n - 1] + a[n + 1] - 1)/2 - 1; c[4] = 2; c[5] = 7; c[n_] := b[n - 4] + b[n - 5] + n - 1 + Sum[b[i], {i, n - 2}]; Array[c, 32, 4] (* Robert G. Wilson v, Nov 07 2010 *)
PROG
(MATLAB) T(1) = 1; T(2) = 2; T(3) = 4; for n = 4 : 100 T(n) = T(n-1) + T(n-2) + T(n-3); end; d(1) = 0; for n = 2 : 50 d(n) = (T(n+1) + T(n-1) - 1)/2 - 1; end; D(4) = 2; D(5) = 7; for n = 6 : 50 D(n) = d(n-4) + d(n-5) + 1 + sum(d(1:(n-2))) + (n - 2); end; disp(num2str(D));
CROSSREFS
Cf. A080843. [Robert G. Wilson v, Nov 07 2010]
Sequence in context: A070070 A318054 A033937 * A086717 A023657 A045380
KEYWORD
nonn,uned
AUTHOR
Amy Glen (amy.glen(AT)gmail.com), Apr 07 2006
STATUS
approved