login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070070
Rounded value of n*L_n(-1) where L is the Laguerre polynomial.
1
0, 2, 7, 17, 35, 64, 111, 182, 286, 436, 647, 938, 1336, 1871, 2583, 3520, 4741, 6320, 8347, 10930, 14199, 18312, 23460, 29869, 37808, 47600, 59624, 74331, 92250, 114006, 140329, 172077, 210249, 256010, 310717, 375943, 453513, 545538, 654453
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Laguerre Polynomial.
FORMULA
a(n) ~ exp(2*sqrt(n) - 1/2) * n^(3/4) / (2*sqrt(Pi)) * (1 + 31/(48*sqrt(n))). - Vaclav Kotesovec, Nov 14 2017
a(n) = round(n * [x^n] exp(x/(1 - x))/(1 - x)). - Ilya Gutkovskiy, Jun 05 2018
a(n) = round(n * Sum_{k=0..n} binomial(n, k) / k!). - Sean A. Irvine, Jun 01 2024
MAPLE
a := n->round(expand(n*LaguerreL(n, -1)));
MATHEMATICA
a[n_] := Round[n*LaguerreL[n, 0, -1]]
PROG
(PARI) {a(n) = if( n<0, 0, round(n * polcoeff(exp(x/(1-x) + x*O(x^n)) / (1-x), n)))}; /* Michael Somos, Dec 04 2002 */
(PARI) for(n=0, 40, print1(round(n*sum(k=0, n, binomial(n, k)/k!)), ", ")) \\ G. C. Greubel, May 14 2018
(Magma) [Round(n*(&+[Binomial(n, k)/Factorial(k): k in [0..n]])): n in [0..40]]; // G. C. Greubel, May 14 2018
CROSSREFS
Sequence in context: A145066 A014148 A367185 * A318054 A033937 A116576
KEYWORD
nonn
AUTHOR
Karol A. Penson, Apr 19 2002
STATUS
approved