login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct squares D(n) in the n-th iterate of the tribonacci morphism (a -> ab, b -> ac, c -> a) on the letter a.
0

%I #14 Dec 17 2017 07:35:01

%S 2,7,17,35,69,132,248,462,856,1581,2915,5369,9883,18186,33458,61548,

%T 113214,208243,383029,704511,1295809,2383376,4383724,8062938,14830068,

%U 27276761,50169799,92276661,169723255,312169750,574169702,1056062744

%N Number of distinct squares D(n) in the n-th iterate of the tribonacci morphism (a -> ab, b -> ac, c -> a) on the letter a.

%C See the cited reference (A. Glen) for similar sequences associated to the k-bonacci morphism and particular episturmian (infinite) words.

%D Amy Glen, On Sturmian and episturmian words and related topics, Ph.D. Thesis, The University of Adelaide (Australia), April 2006.

%F For n >= 6, D(n) = d(n-5) + d(n-6) + 1 + Sum (d(m) + 1), m = 0 ... (n-3), where d(m) = (T(m+1) + T(m-1) - 1)/2 - 1 and the T(m) are the tribonacci numbers: (T(0), T(1), T(2), ...) = (1, 2, 4, 7, 13, ...).

%F Empirical G.f.: x^4*(2*x^3-x-2) / ((x-1)^2*(x^3+x^2+x-1)). [_Colin Barker_, Dec 02 2012]

%e D(4) = 2 because the 4th iterate of the tribonacci morphism on a is abacabaabacab, which contains the two squares aa and abaaba.

%e D(5) = 7 because the 5th iterate of the tribonacci morphism on a is abacabaabacababacabaabac, which contains the square of each of the following seven strings: a, ab, ba, aba, abacab, bacaba, abacaba.

%t a[1] = 1; a[2] = 2; a[3] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3]; b[1] = 0; b[n_] := b[n] = (a[n - 1] + a[n + 1] - 1)/2 - 1; c[4] = 2; c[5] = 7; c[n_] := b[n - 4] + b[n - 5] + n - 1 + Sum[b[i], {i, n - 2}]; Array[c, 32, 4] (* _Robert G. Wilson v_, Nov 07 2010 *)

%o (MATLAB) T(1) = 1; T(2) = 2; T(3) = 4; for n = 4 : 100 T(n) = T(n-1) + T(n-2) + T(n-3); end; d(1) = 0; for n = 2 : 50 d(n) = (T(n+1) + T(n-1) - 1)/2 - 1; end; D(4) = 2; D(5) = 7; for n = 6 : 50 D(n) = d(n-4) + d(n-5) + 1 + sum(d(1:(n-2))) + (n - 2); end; disp(num2str(D));

%Y Cf. A080843. [_Robert G. Wilson v_, Nov 07 2010]

%K nonn,uned

%O 4,1

%A Amy Glen (amy.glen(AT)gmail.com), Apr 07 2006