login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115636
A divide-and-conquer number triangle.
4
1, 1, -1, 4, 0, 1, 4, 0, 1, -1, 4, -4, 0, 0, 1, 4, -4, 0, 0, 1, -1, 16, 0, 4, 0, 0, 0, 1, 16, 0, 4, 0, 0, 0, 1, -1, 16, 0, 4, -4, 0, 0, 0, 0, 1, 16, 0, 4, -4, 0, 0, 0, 0, 1, -1, 16, -16, 0, 0, 4, 0, 0, 0, 0, 0, 1, 16, -16, 0, 0, 4, 0, 0, 0, 0, 0, 1, -1, 16, -16, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 1, 16, -16, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 1, -1
OFFSET
0,4
FORMULA
T(n, 0) = A115639(n).
Sum_{k=0..n} T(n, k) = A115637(n).
T(n, k) = (-1)^k*( 1 if k = n otherwise (-1)*Sum_{j=k+1..n} T(n, j)*A115633(j, k) ). - G. C. Greubel, Nov 24 2021
EXAMPLE
Triangle begins
1;
1, -1;
4, 0, 1;
4, 0, 1, -1;
4, -4, 0, 0, 1;
4, -4, 0, 0, 1, -1;
16, 0, 4, 0, 0, 0, 1;
16, 0, 4, 0, 0, 0, 1, -1;
16, 0, 4, -4, 0, 0, 0, 0, 1;
16, 0, 4, -4, 0, 0, 0, 0, 1, -1;
16, -16, 0, 0, 4, 0, 0, 0, 0, 0, 1;
16, -16, 0, 0, 4, 0, 0, 0, 0, 0, 1, -1;
16, -16, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 1;
16, -16, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 1, -1;
64, 0, 16, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1;
64, 0, 16, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, -1;
64, 0, 16, 0, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 1;
MATHEMATICA
A115633[n_, k_]:= If[k==n, (-1)^n, If[k==n-1, Mod[n, 2], If[n==2*k+2, -4, 0]]];
T[n_, k_]:= T[n, k]= (-1)^k*If[k==n, 1, -Sum[T[n, j]*A115633[j, k], {j, k+1, n}] ];
Table[T[n, k], {n, 0, 18}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 24 2021 *)
PROG
(Sage)
@CachedFunction
def A115633(n, k):
if (k==n): return (-1)^n
elif (k==n-1): return n%2
elif (n==2*k+2): return -4
else: return 0
def A115636(n, k):
if (k==0): return 4^(floor(log(n+2, 2)) -1)
elif (k==n): return (-1)^n
elif (k==n-1): return (n%2)
else: return (-1)^(k+1)*sum( A115636(n, j)*A115633(j, k) for j in (k+1..n) )
flatten([[A115636(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Nov 24 2021
CROSSREFS
Cf. A115633 (inverse), A115637 (row sums), A115639 (first column).
Sequence in context: A122873 A221275 A176803 * A115715 A292143 A350824
KEYWORD
sign,tabl
AUTHOR
Paul Barry, Jan 27 2006
STATUS
approved