login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115633
A divide and conquer-related triangle: see formula for T(n,k), n >= k >= 0.
5
1, 1, -1, -4, 0, 1, 0, 0, 1, -1, 0, -4, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, -4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, -4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,4
FORMULA
T(n, k) = (-1)^n if n = k; else -4 if n = 2k+2; else (n mod 2) if n = k+1; else 0.
G.f.: (1+x-x*y)/(1-x^2*y^2) - 4*x^2/(1-x^2*y).
(1, -x) + (x, x)/2 + (x, -x)/2 - 4(x^2, x^2) expressed in the notation of stretched Riordan arrays.
Column k has g.f.: (-x)^k + (x*(-x)^k + x^(k+1))/2 - 4*x^(2*k+2).
Sum_{k=0..n} T(n, k) = A115634(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A115635(n).
EXAMPLE
Triangle begins
1;
1, -1;
-4, 0, 1;
0, 0, 1, -1;
0, -4, 0, 0, 1;
0, 0, 0, 0, 1, -1;
0, 0, -4, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1, -1;
0, 0, 0, -4, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 1, -1;
0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1;
0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1;
0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1;
0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 1;
MATHEMATICA
T[n_, k_]:= If[k==n, (-1)^n, If[k==n-1, (1-(-1)^n)/2, If[n==2*k+2, -4, 0]]];
Table[T[n, k], {n, 0, 18}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 23 2021 *)
PROG
(Sage)
def A115633(n, k):
if (k==n): return (-1)^n
elif (k==n-1): return n%2
elif (n==2*k+2): return -4
else: return 0
flatten([[A115633(n, k) for k in (0..n)] for n in (0..18)]) # G. C. Greubel, Nov 23 2021
(PARI) A115633(n, k)=if(n==k, (-1)^n, bittest(n, 0), k==n-1, k+1==n\2, -4) \\ M. F. Hasler, Nov 24 2021
CROSSREFS
Cf. A115634 (row sums), A115635 (diagonal sums), A115636 (inverse).
Sequence in context: A128131 A321188 A322076 * A115713 A199571 A036859
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Jan 27 2006
STATUS
approved