login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A divide-and-conquer number triangle.
4

%I #6 Nov 24 2021 10:40:54

%S 1,1,-1,4,0,1,4,0,1,-1,4,-4,0,0,1,4,-4,0,0,1,-1,16,0,4,0,0,0,1,16,0,4,

%T 0,0,0,1,-1,16,0,4,-4,0,0,0,0,1,16,0,4,-4,0,0,0,0,1,-1,16,-16,0,0,4,0,

%U 0,0,0,0,1,16,-16,0,0,4,0,0,0,0,0,1,-1,16,-16,0,0,4,-4,0,0,0,0,0,0,1,16,-16,0,0,4,-4,0,0,0,0,0,0,1,-1

%N A divide-and-conquer number triangle.

%H G. C. Greubel, <a href="/A115636/b115636.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, 0) = A115639(n).

%F Sum_{k=0..n} T(n, k) = A115637(n).

%F T(n, k) = (-1)^k*( 1 if k = n otherwise (-1)*Sum_{j=k+1..n} T(n, j)*A115633(j, k) ). - _G. C. Greubel_, Nov 24 2021

%e Triangle begins

%e 1;

%e 1, -1;

%e 4, 0, 1;

%e 4, 0, 1, -1;

%e 4, -4, 0, 0, 1;

%e 4, -4, 0, 0, 1, -1;

%e 16, 0, 4, 0, 0, 0, 1;

%e 16, 0, 4, 0, 0, 0, 1, -1;

%e 16, 0, 4, -4, 0, 0, 0, 0, 1;

%e 16, 0, 4, -4, 0, 0, 0, 0, 1, -1;

%e 16, -16, 0, 0, 4, 0, 0, 0, 0, 0, 1;

%e 16, -16, 0, 0, 4, 0, 0, 0, 0, 0, 1, -1;

%e 16, -16, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 1;

%e 16, -16, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 1, -1;

%e 64, 0, 16, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1;

%e 64, 0, 16, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, -1;

%e 64, 0, 16, 0, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 1;

%t A115633[n_, k_]:= If[k==n, (-1)^n, If[k==n-1, Mod[n,2], If[n==2*k+2, -4, 0]]];

%t T[n_, k_]:= T[n, k]= (-1)^k*If[k==n, 1, -Sum[T[n, j]*A115633[j, k], {j,k+1,n}] ];

%t Table[T[n, k], {n,0,18}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 24 2021 *)

%o (Sage)

%o @CachedFunction

%o def A115633(n, k):

%o if (k==n): return (-1)^n

%o elif (k==n-1): return n%2

%o elif (n==2*k+2): return -4

%o else: return 0

%o def A115636(n,k):

%o if (k==0): return 4^(floor(log(n+2, 2)) -1)

%o elif (k==n): return (-1)^n

%o elif (k==n-1): return (n%2)

%o else: return (-1)^(k+1)*sum( A115636(n, j)*A115633(j, k) for j in (k+1..n) )

%o flatten([[A115636(n, k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Nov 24 2021

%Y Cf. A115633 (inverse), A115637 (row sums), A115639 (first column).

%K sign,tabl

%O 0,4

%A _Paul Barry_, Jan 27 2006