login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115160
Numbers that are not the sum of two triangular numbers and a fourth power.
7
33, 63, 75, 125, 365, 489, 492, 684, 693, 723, 954, 1043, 1185, 1505, 1623, 1629, 1736, 1775, 1899, 1904, 1925, 2015, 2051, 2679, 2883, 3534, 3774, 3936, 4332, 4461, 4739, 4923, 5445, 5721, 5847, 6285, 6348, 6474, 6783, 7034, 7478, 8604, 9576, 9686, 9863
OFFSET
1,1
COMMENTS
There are 88 such numbers up to 2*10^9, the last one in this range being 1945428.
LINKS
PROG
(PARI) sumset_lim(a, b, lim)=my(v=[], u, t); if(a==b, for(i=1, #a, u=List(); for(j=i, #b, t=a[i]+b[j]; if(t>lim, break); listput(u, t)); v=vecsort(concat(v, Vec(u)), , 8)), for(i=1, #a, u=List(); for(j=1, #b, t=a[i]+b[j]; if(t>lim, break); listput(u, t)); v=vecsort(concat(v, Vec(u)), , 8))); v
makev(lim)=my(n=floor(sqrt(2*lim)-1/2), v); sumset_lim(v=vector(n, k, k*(k-1)/2), v, lim)
is(n)=for(i=1, #v, if(ispower(n-v[i], 4), return(0)); if(v[i]>n, return(1)))
v=makev(1e5);
for(n=1, 1e5, if(is(n), print1(n", "))) \\ Charles R Greathouse IV, Aug 17 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Giovanni Resta, Jan 15 2006
STATUS
approved