Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 May 13 2013 01:48:37
%S 33,63,75,125,365,489,492,684,693,723,954,1043,1185,1505,1623,1629,
%T 1736,1775,1899,1904,1925,2015,2051,2679,2883,3534,3774,3936,4332,
%U 4461,4739,4923,5445,5721,5847,6285,6348,6474,6783,7034,7478,8604,9576,9686,9863
%N Numbers that are not the sum of two triangular numbers and a fourth power.
%C There are 88 such numbers up to 2*10^9, the last one in this range being 1945428.
%H David W. Wilson, <a href="/A115160/b115160.txt">Table of n, a(n) for n = 1..88</a>
%o (PARI) sumset_lim(a,b,lim)=my(v=[],u,t);if(a==b,for(i=1,#a,u=List();for(j=i,#b,t=a[i]+b[j];if(t>lim,break);listput(u,t));v=vecsort(concat(v,Vec(u)),,8)),for(i=1,#a,u=List();for(j=1,#b,t=a[i]+b[j];if(t>lim,break);listput(u,t));v=vecsort(concat(v,Vec(u)),,8)));v
%o makev(lim)=my(n=floor(sqrt(2*lim)-1/2),v);sumset_lim(v=vector(n,k,k*(k-1)/2),v,lim)
%o is(n)=for(i=1,#v,if(ispower(n-v[i],4),return(0));if(v[i]>n,return(1)))
%o v=makev(1e5);
%o for(n=1,1e5,if(is(n),print1(n", "))) \\ _Charles R Greathouse IV_, Aug 17 2011
%Y Cf. A022552, A014158, A115159, A115161, A115162, A115163.
%K nonn
%O 1,1
%A _Giovanni Resta_, Jan 15 2006