login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114992
Primes of the form 2^a * 5^b * 7^c + 1 for positive a, b, c.
1
71, 281, 491, 701, 2801, 4481, 7001, 7841, 12251, 13721, 17921, 28001, 34301, 54881, 70001, 78401, 85751, 122501, 125441, 137201, 168071, 240101, 280001, 286721, 437501, 490001
OFFSET
1,1
COMMENTS
Since the factors of 2 and 5 are the same as a factor of 10, a subset of A030430 "primes of form 10n+1." There are subsequences such as 71, 701, 7001, 70001, 700001, 700000001, 7000000001; 281, 2801, 280001, 2800001; 491, 490001, 4900001, 490000001, 49000000001, 490000000001.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1) = 71 = 2^1 * 5^1 * 7^1 + 1.
a(2) = 281 = 2^3 * 5^1 * 7^1 + 1.
a(3) = 491 = 2^1 * 5^1 * 7^2 + 1.
a(4) = 701 = 2^2 * 5^2 * 7^1 + 1.
a(5) = 2801 = 2^4 * 5^2 * 7^1 + 1.
MATHEMATICA
With[{nn=30}, Take[Select[Union[2^#[[1]]*5^#[[2]]*7^#[[3]]+1&/@Tuples[ Range[nn], 3]], PrimeQ], nn]] (* Harvey P. Dale, Aug 24 2012 *)
PROG
(PARI) find(lim)=my(v=List(), t); for(b=1, log(lim\14)\log(5), for(c=1, log(lim\2\5^b)/log(7), t=2*5^b*7^c; while(t<lim, if(ispseudoprime(t+1), listput(v, t+1)); t+=t))); vecsort(Vec(v));
find(10^100) \\ Charles R Greathouse IV, Feb 17 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Feb 22 2006
EXTENSIONS
Corrected by T. D. Noe, Nov 15 2006
STATUS
approved