OFFSET
0,2
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: -(1 + 68*x + 71*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 22 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(70))*Pi/sqrt(70) + 1)/2.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/sqrt(70))*Pi/sqrt(70) + 1)/2. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {1, 71, 281}, 50] (* Vincenzo Librandi, Feb 20 2012 *)
PROG
(Magma) I:=[1, 71, 281]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 20 2012
(PARI) for(n=0, 40, print1(70*n^2 + 1", ")); \\ Vincenzo Librandi, Feb 20 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 25 2009
EXTENSIONS
Comment rewritten, a(0) added and formula replaced by R. J. Mathar, Oct 22 2009
STATUS
approved