login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158738 a(n) = 72*n^2 - 1. 2
71, 287, 647, 1151, 1799, 2591, 3527, 4607, 5831, 7199, 8711, 10367, 12167, 14111, 16199, 18431, 20807, 23327, 25991, 28799, 31751, 34847, 38087, 41471, 44999, 48671, 52487, 56447, 60551, 64799, 69191, 73727, 78407, 83231, 88199, 93311 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (72*n^2 - 1)^2 - (1296*n^2 - 36)*(2*n)^2 = 1 can be written as a(n)^2 - A158737(n)*A005843(n)^2 = 1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Vincenzo Librandi, X^2-AY^2=1

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: x*(-71 - 74*x + x^2)/(x-1)^3.

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

MAPLE

A158738:=n->72*n^2 - 1; seq(A158738(n), n=1..40); # Wesley Ivan Hurt, Feb 01 2014

MATHEMATICA

72Range[40]^2-1 (* or *) LinearRecurrence[{3, -3, 1}, {71, 287, 647}, 40] (* Harvey P. Dale, May 01 2011 *)

PROG

(MAGMA) I:=[71, 287, 647]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 21 2012

(PARI) for(n=1, 40, print1(72*n^2 - 1", ")); \\ Vincenzo Librandi, Feb 21 2012

CROSSREFS

Cf. A005843, A158737.

Sequence in context: A158734 A126021 A142548 * A142143 A142739 A142227

Adjacent sequences:  A158735 A158736 A158737 * A158739 A158740 A158741

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 25 2009

EXTENSIONS

Comment rewritten and formula replaced by R. J. Mathar, Oct 22 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 7 10:14 EST 2021. Contains 341869 sequences. (Running on oeis4.)